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1 What Is the Control System Toolbox?

Introduction
MATLAB® has a rich collection of functions immediately useful to the control
engineer or system theorist. Complex arithmetic, eigenvalues, root-finding,
matrix inversion, and fast Fourier transforms are just a few examples of
important numerical tools found in MATLAB. More generally, the MATLAB
linear algebra, matrix computation, and numerical analysis capabilities
provide a reliable foundation for control system engineering as well as many
other disciplines.

Control System Toolbox builds on the foundations of MATLAB to provide
functions designed for control engineering. Control System Toolbox is a
collection of algorithms, written mostly as M-files, that implements common
control system design, analysis, and modeling techniques. Convenient
graphical user interfaces (GUIs) simplify typical control engineering tasks.

Control systems can be modeled as transfer functions, in zero-pole-gain or
state-space form, allowing you to use both classical and modern control
techniques. You can manipulate both continuous-time and discrete-time
systems. Conversions between various model representations are provided.
Time responses, frequency responses, and root loci can be computed and
graphed. Other functions allow pole placement, optimal control, and
estimation. Finally, Control System Toolbox is open and extensible. You can
create custom M-files to suit your particular application.
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Installation

Installation
Instructions for installing Control System Toolbox can be found in the
MATLAB Installation documentation for your platform. We recommend that
you store the files from this toolbox in a subdirectory named control under
the main matlab directory. To determine if Control System Toolbox is already
installed on your system, check for a subdirectory named control within
the main toolbox directory or folder.
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1 What Is the Control System Toolbox?

Demos
Control System Toolbox provides demonstration files that show you how to
use the toolbox to perform control design tasks in various settings. To run
these demos, type

demo

at the MATLAB prompt. This opens the Demos pane in the Help browser.
Select Toolboxes and then Control System to see a list of available demos.
Alternatively, if you have the Help browser open, you can select the Demos
pane directly and follow the same procedure.

In addition, Design Case Studies contains detailed examples of various design
problems.
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Using the Documentation

Using the Documentation
If you are a new user, this guide, Getting Started with the Control System
Toolbox, is written for you. Specifically, you will learn

• How to build and manipulate linear time-invariant models of dynamical
systems

• How to analyze such models and plot their time and frequency responses

• How to design compensators using root locus and pole placement techniques

In addition, this guide discusses model order reduction, linear quadratic
Gaussian (LQG) techniques, and presents examples that show how to use
these techniques.

This guide is available online under Control System Toolbox. The rest of
the toolbox documentation is also available online; click Control System
Toolbox to open its product page, which is a roadmap with links to the
Control System Toolbox documentation and to PDF versions of the same
documentation.

If you are an experienced toolbox user, see the following documentation
for detailed discussions of control system design topics:

• Release Notes — Details on the latest release

• Creating and Manipulating Models — In-depth information on how to
create and manipulate linear models and linear time-invariant (LTI)
arrays, which are data objects that you can use to store collections of linear
models in one variable

• Customization — Information about setting plot properties, including how
to set preferences that persist from session to session

• Design Case Studies— Worked examples, including Kalman filtering and
MIMO design

• Reliable Computations — Numerical stability and accuracy issues

• GUI Reference — Complete descriptions of the LTI Viewer and SISO Design
Tool, which are graphical user interfaces (GUIs) that you can use to analyze
systems and design single-input/single-output (SISO) compensators
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1 What Is the Control System Toolbox?

All toolbox users should use Functions - By Category for reference
information on functions and tools. For functions, reference descriptions
include a synopsis of the function’s syntax, as well as a complete explanation
of options and operation. Many reference descriptions also include helpful
examples, a description of the function’s algorithm, and references to
additional reading material. For GUI-based tools, the descriptions include
options for invoking the tool.
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2 Building Models

Linear Models
Typically, control engineers begin by developing a mathematical description of
the dynamic system that they want to control. The system to be controlled is
called a plant. As an example of a plant, this section uses the DC motor. This
section develops the differential equations that describe the electromechanical
properties of a DC motor with an inertial load. It then shows you how to use
the Control System Toolbox to build linear models based on these equations.

Linear Model Representations
The Control System Toolbox supports the following model representations:

• State-space models (SS) of the form

where A, B, C, and D are matrices of appropriate dimensions, x is the state
vector, and u and y are the input and output vectors.

• Transfer functions (TF), for example,

• Zero-pole-gain (ZPK) models, for example,

• Frequency response data (FRD) models, which consist of sampled
measurements of a system’s frequency response. For example, you can
store experimentally collected frequency response data in an FRD model.

Note The design of FRD models is a specialized subject that this guide does
not address. See Frequency Response Data (FRD) Models for a discussion
of this topic.
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Linear Models

SISO Example: The DC Motor
A simple model of a DC motor driving an inertial load shows the angular rate

of the load, , as the output and applied voltage, = , as the input.
The ultimate goal of this example is to control the angular rate by varying the
applied voltage. This picture shows a simple model of the DC motor.

A Simple Model of a DC Motor Driving an Inertial Load

In this model, the dynamics of the motor itself are idealized; for instance,
the magnetic field is assumed to be constant. The resistance of the circuit
is denoted by R and the self-inductance of the armature by L. If you are
unfamiliar with the basics of DC motor modeling, consult any basic text on
physical modeling. The important thing here is that with this simple model
and basic laws of physics, it is possible to develop differential equations that
describe the behavior of this electromechanical system. In this example, the
relationships between electric potential and mechanical force are Faraday’s
law of induction and Ampère’s law for the force on a conductor moving through
a magnetic field.

Mathematical Derivation
The torque seen at the shaft of the motor is proportional to the current i
induced by the applied voltage,
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2 Building Models

where Km, the armature constant, is related to physical properties of the
motor, such as magnetic field strength, the number of turns of wire around
the conductor coil, and so on. The back (induced) electromotive force, , is
a voltage proportional to the angular rate seen at the shaft,

where Kb, the emf constant, also depends on certain physical properties
of the motor.

The mechanical part of the motor equations is derived using Newton’s law,
which states that the inertial load J times the derivative of angular rate
equals the sum of all the torques about the motor shaft. The result is this
equation,

where is a linear approximation for viscous friction.

Finally, the electrical part of the motor equations can be described by

or, solving for the applied voltage and substituting for the back emf,

This sequence of equations leads to a set of two differential equations that
describe the behavior of the motor, the first for the induced current,

and the second for the resulting angular rate,
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Linear Models

State-Space Equations for the DC Motor
Given the two differential equations derived in the last section, you can now
develop a state-space representation of the DC motor as a dynamic system.
The current i and the angular rate are the two states of the system. The
applied voltage, , is the input to the system, and the angular velocity

is the output.

State-Space Representation of the DC Motor Example

Constructing SISO Models
Once you have a set of differential equations that describe your plant, you
can construct SISO models using simple commands in the Control System
Toolbox. The following sections discuss

• Constructing a state-space model of the DC motor

• Converting between model representations

• Creating transfer function and zero/pole/gain models

Constructing a State-Space Model of the DC Motor
Listed below are nominal values for the various parameters of a DC motor.

R= 2.0 % Ohms
L= 0.5 % Henrys
Km = .015 % torque constant
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2 Building Models

Kb = .015 % emf constant
Kf = 0.2 % Nms
J= 0.02 % kg.m^2

Given these values, you can construct the numerical state-space
representation using the ss function.

A = [-R/L -Kb/L; Km/J -Kf/J]
B = [1/L; 0];
C = [0 1];
D = [0];
sys_dc = ss(A,B,C,D)

This is the output of the last command.

a =
x1 x2

x1 -4 -0.03
x2 0.75 -10

b =
u1

x1 2
x2 0

c =
x1 x2

y1 0 1

d =
u1

y1 0
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Linear Models

Converting Between Model Representations
Now that you have a state-space representation of the DC motor, you can
convert to other model representations, including transfer function (TF) and
zero/pole/gain (ZPK) models.

Transfer Function Representation. You can use tf to convert from the
state-space representation to the transfer function. For example, use this code
to convert to the transfer function representation of the DC motor.

sys_tf = tf(sys_dc)

Transfer function:
1.5

------------------
s^2 + 14 s + 40.02

Zero/Pole/Gain Representation. Similarly, the zpk function converts
from state-space or transfer function representations to the zero/pole/gain
format. Use this code to convert from the state-space representation to the
zero/pole/gain form for the DC motor.

sys_zpk = zpk(sys_dc)

Zero/pole/gain:
1.5

-------------------
(s+4.004) (s+9.996)

Note The state-space representation is best suited for numerical
computations. For highest accuracy, convert to state space prior to combining
models and avoid the transfer function and zero/pole/gain representations,
except for model specification and inspection. See Reliable Computations for
more information on numerical issues.
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2 Building Models

Constructing Transfer Function and Zero/Pole/Gain Models
In the DC motor example, the state-space approach produces a set of matrices
that represents the model. If you choose a different approach, you can
construct the corresponding models using tf, zpk, ss, or frd.

sys = tf(num,den) % Transfer function
sys = zpk(z,p,k) % Zero/pole/gain
sys = ss(a,b,c,d) % State-space
sys = frd(response,frequencies) % Frequency response data

For example, if you want to create the transfer function of the DC motor
directly, use these commands.

s = tf('s');
sys_tf = 1.5/(s^2+14*s+40.02)

The Control System Toolbox builds this transfer function.

Transfer function:
1.5

--------------------
s^2 + 14 s + 40.02

Alternatively, you can create the transfer function by specifying the numerator
and denominator with this code.

sys_tf = tf(1.5,[1 14 40.02])

Transfer function:
1.5

------------------
s^2 + 14 s + 40.02

To build the zero/pole/gain model, use this command.

sys_zpk = zpk([],[-9.996 -4.004], 1.5)

This is the resulting zero/pole/gain representation.

Zero/pole/gain:
1.5
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-------------------
(s+9.996) (s+4.004)

Discrete Time Systems
The Control System Toolbox provides full support for discrete-time systems.
You can create discrete systems in the same way that you create analog
systems; the only difference is that you must specify a sample time period for
any model you build. For example,

sys_disc = tf(1, [1 1], .01);

creates a SISO model in the transfer function format.

Transfer function:
1

-----
z + 1

Sampling time: 0.01

Adding Time Delays to Discrete-Time Models
You can add time delays to discrete-time models by specifying an input
or output time delay when building the model. The time delay must be a
nonnegative integer that represents a multiple of the sampling time. For
example,

sys_delay = tf(1, [1 1], 0.01,'outputdelay',5);

produces a system with an output delay of 0.05 second.

Transfer function:
1

z^(-5) * -----
z + 1

Sampling time: 0.01
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2 Building Models

Adding Delays to Linear Models
You can add time delays to linear models by specifying an input or output
delay when building a model. For example, to add an input delay to the DC
motor, use this code.

sys_tfdelay = tf(1.5, [1 14 40.02],'inputdelay',0.05)

The Control System Toolbox constructs the DC motor transfer function, but
adds a 0.05 second delay.

Transfer function:
1.5

exp(-0.05*s) * ------------------
s^2 + 14 s + 40.02

For a complete description of adding time delays to models, see Time Delays.

LTI Objects
For convenience, the Control System Toolbox uses custom data structures
called LTI objects to store model-related data. For example, the variable
sys_dc created for the DC motor example is called an SS object. There are
also TF, ZPK, and FRD objects for transfer function, zero/pole/gain, and
frequency data response models respectively. The four LTI objects encapsulate
the model data and enable you to manipulate linear systems as single entities
rather than as collections of vectors or matrices.

To see what LTI objects contain, use the get command. This code describes
the contents of sys_dc from the DC motor example.

get(sys_dc)
a: [2x2 double]
b: [2x1 double]
c: [0 1]
d: 0
e: []

StateName: {2x1 cell}
InternalDelay: [0x1 double]

Ts: 0
InputDelay: 0
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OutputDelay: 0
InputName: {''}

OutputName: {''}
InputGroup: [1x1 struct]

OutputGroup: [1x1 struct]
Name: ''

Notes: {}
UserData: [] OutputName: {''}

InputGroup: {0x2 cell}
OutputGroup: {0x2 cell}

Notes: {}
UserData: []

You can manipulate the data contained in LTI objects using the set command;
see the Control System Toolbox online reference pages for descriptions of
set and get.

Another convenient way to set or retrieve LTI model properties is to access
them directly using dot notation. For example, if you want to access the value
of the A matrix, instead of using get, you can type

sys_dc.a

at the MATLAB prompt. MATLAB returns the A matrix.

ans =

-4.0000 -0.0300
0.7500 -10.0000

Similarly, if you want to change the values of the A matrix, you can do so
directly, as this code shows.

A_new = [-4.5 -0.05; 0.8 -12.0];
sys_dc.a = A_new;

For more information on LTI properties, type ltiprops at the MATLAB
prompt. For a complete description of LTI objects, see Creating and
Manipulating Models.
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MIMO Models
You can use the same functions that apply to SISO systems to create
multiple-input, multiple-output (MIMO) models, including arbitrary MIMO
transfer functions and zero/pole/gain models. This section begins with an
example of how to build a MIMO system. It then discusses how to build
MIMO transfer functions by concatenating SISO transfer functions and how
to access and manipulate individual SISO transfer functions contained in
a MIMO model.

MIMO Example: Jet Transport Aircraft
This example shows how to build a MIMO model of a jet transport. Since
the development of a physical model for a jet aircraft is lengthy, only the
state-space equations are presented here. See any standard text in aviation
for a more complete discussion of the physics behind aircraft flight.

The jet model during cruise flight at MACH = 0.8 and H = 40,000 ft. is

A = [-0.0558 -0.9968 0.0802 0.0415
0.5980 -0.1150 -0.0318 0

-3.0500 0.3880 -0.4650 0
0 0.0805 1.0000 0];

B = [ 0.0073 0
-0.4750 0.0077
0.1530 0.1430

0 0];

C = [0 1 0 0
0 0 0 1];

D = [0 0
0 0];

Use the following commands to specify this state-space model as an LTI object
and attach names to the states, inputs, and outputs.

states = {'beta' 'yaw' 'roll' 'phi'};
inputs = {'rudder' 'aileron'};
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outputs = {'yaw rate' 'bank angle'};

sys_mimo = ss(A,B,C,D,'statename',states,...
'inputname',inputs,...
'outputname',outputs);

You can display the LTI model by typing sys_mimo.

sys_mimo

a =
beta yaw roll phi

beta -0.0558 -0.9968 0.0802 0.0415
yaw 0.598 -0.115 -0.0318 0

roll -3.05 0.388 -0.465 0
phi 0 0.0805 1 0

b =
rudder aileron

beta 0.0073 0
yaw -0.475 0.0077

roll 0.153 0.143
phi 0 0

c =
beta yaw roll phi

yaw rate 0 1 0 0
bank angle 0 0 0 1

d =
rudder aileron

yaw rate 0 0
bank angle 0 0

Continuous-time model.
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The model has two inputs and two outputs. The units are radians for beta
(sideslip angle) and phi (bank angle) and radians/sec for yaw (yaw rate) and
roll (roll rate). The rudder and aileron deflections are in degrees.

As in the SISO case, use tf to derive the transfer function representation.

tf(sys_mimo)

Transfer function from input "rudder" to output...
-0.475 s^3 - 0.2479 s^2 - 0.1187 s - 0.05633

yaw rate: ---------------------------------------------------
s^4 + 0.6358 s^3 + 0.9389 s^2 + 0.5116 s + 0.003674

0.1148 s^2 - 0.2004 s - 1.373
bank angle: ---------------------------------------------------

s^4 + 0.6358 s^3 + 0.9389 s^2 + 0.5116 s + 0.003674

Transfer function from input "aileron" to output...
0.0077 s^3 - 0.0005372 s^2 + 0.008688 s + 0.004523

yaw rate: ---------------------------------------------------
s^4 + 0.6358 s^3 + 0.9389 s^2 + 0.5116 s + 0.003674

0.1436 s^2 + 0.02737 s + 0.1104
bank angle: ---------------------------------------------------

s^4 + 0.6358 s^3 + 0.9389 s^2 + 0.5116 s + 0.003674

Constructing MIMO Transfer Functions
MIMO transfer functions are two-dimensional arrays of elementary SISO
transfer functions. There are two ways to specify MIMO transfer function
models:

• Concatenation of SISO transfer function models

• Using tf with cell array arguments

Concatenation of SISO Models
Consider the following single-input, two-output transfer function.
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You can specify by concatenation of its SISO entries. For instance,

h11 = tf([1 -1],[1 1]);
h21 = tf([1 2],[1 4 5]);

or, equivalently,

s = tf('s')
h11 = (s-1)/(s+1);
h21 = (s+2)/(s^2+4*s+5);

can be concatenated to form .

H = [h11; h21]

This syntax mimics standard matrix concatenation and tends to be easier
and more readable for MIMO systems with many inputs and/or outputs. See
Model Interconnection Functionsfor more details on concatenation operations
for LTI systems.

Using the tf Function with Cell Arrays
Alternatively, to define MIMO transfer functions using tf, you need two cell
arrays (say, N and D) to represent the sets of numerator and denominator
polynomials, respectively. See Cell Arrays in the MATLAB documentation for
more details on cell arrays.

For example, for the rational transfer matrix , the two cell arrays N and D
should contain the row-vector representations of the polynomial entries of
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You can specify this MIMO transfer matrix by typing

N = {[1 -1];[1 2]}; % Cell array for N(s)
D = {[1 1];[1 4 5]}; % Cell array for D(s)
H = tf(N,D)

The Control System Toolbox responds with

Transfer function from input to output...
s - 1

#1: -----
s + 1

s + 2
#2: -------------

s^2 + 4 s + 5

Notice that both N and D have the same dimensions as H. For a general MIMO
transfer matrix , the cell array entries N{i,j} and D{i,j} should be

row-vector representations of the numerator and denominator of , the
entry of the transfer matrix .

Accessing I/O Pairs in MIMO Systems
Once you have defined a MIMO system, you can access and manipulate I/O
pairs by specifying input and output pairs of the system. For instance, if
sys_mimo is a MIMO system with two inputs and three outputs,

sys_mimo(3,1)

extracts the subsystem, mapping the first input to the third output. Row
indices select the outputs and column indices select the inputs. Similarly,

sys_mimo(3,1) = tf(1,[1 0])

redefines the transfer function between the first input and third output as
an integrator.
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Arrays of Linear Models
You can specify and manipulate collections of linear models as single entities
using LTI arrays. For example, if you want to vary the Kb and Km parameters
for the DC motor and store the resulting state-space models, use this code.

K = [0.1 0.15 0.2]; % Several values for Km and Kb
A1 = [-R/L -K(1)/L; K(1)/J -Kf/J];
A2 = [-R/L -K(2)/L; K(2)/J -Kf/J];
A3 = [-R/L -K(3)/L; K(3)/J -Kf/J];
sys_lti(:,:,1)= ss(A1,B,C,D);
sys_lti(:,:,2)= ss(A2,B,C,D);
sys_lti(:,:,3)= ss(A3,B,C,D);

(Note that Kb and Km must be equal, so K represents both parameters in the
state-space equations.) The number of inputs and outputs must be the same
for all linear models encapsulated by the LTI array, but the model order
(number of states) can vary from model to model within a single LTI array.

The LTI array sys_lti contains the state-space models for each value of K.
Type sys_lti to see the contents of the LTI array.

Model sys_lti(:,:,1,1)
======================

a =
x1 x2

x1 -4 -0.2
x2 5 -10

.

.

.
Model sys_lti(:,:,2,1)
======================

a =
x1 x2

x1 -4 -0.3
x2 7.5 -10

.
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.

.
Model sys_lti(:,:,3,1)
======================

a =
x1 x2

x1 -4 -0.4
x2 10 -10

.

.

.
3x1 array of continuous-time state-space models.

You can manipulate the LTI array like any other object in the Control System
Toolbox. For example,

step(sys_lti)

produces a plot containing step responses for all three state-space models.
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Step Responses for an LTI Array Containing Three Models

LTI arrays are useful for performing batch analysis on an entire set of models.
For more information, see Arrays of LTI Models.
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Model Characteristics
The Control System Toolbox contains commands to query model
characteristics such as the I/O dimensions, poles, zeros, and DC gain. These
commands apply to both continuous- and discrete-time models. Their
LTI-based syntax is summarized in the table below.

Commands to Query Model Characteristics

Command Description

size(model_name) Number of inputs and outputs

ndims(model_name) Number of dimensions

isct(model_name) Returns 1 for continuous systems

isdt(model_name) Returns 1 for discrete systems

hasdelay(model_name) True if system has delays

pole(model_name) System poles

zero(model_name) System (transmission) zeros

dcgain(model_name) DC gain

norm(model_name) System norms (H2 and L∞)

covar(model_name,W) Covariance of response to white noise
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Interconnecting Linear Models
You can perform simple operations on LTI models, such as addition,
multiplication, or concatenation. Addition performs a parallel interconnection.
For example, typing

tf(1,[1 0]) + tf([1 1],[1 2]) % 1/s + (s+1)/(s+2)

produces this transfer function.

Transfer function:
s^2 + 2 s + 2
-------------

s^2 + 2 s

Multiplication performs a series interconnection. For example, typing

2 * tf(1,[1 0])*tf([1 1],[1 2]) % 2*1/s*(s+1)/(s+2)

produces this cascaded transfer function.

Transfer function:
2 s + 2
---------
s^2 + 2 s

If the operands are models of different types, the resulting model type is
determined by precedence rules; see Precedence Rules for more information.
State-space models have the highest precedence while transfer functions have
the lowest precedence. Hence the sum of a transfer function and a state-space
model is always a state-space model.

Other available operations include system inversion, transposition, and
pertransposition; see Arithmetic Operations. The Control System Toolbox
also supports matrix-like indexing for extracting subsystems; see Extracting
and Modifying Subsystems for more information.

You can also use the series and parallel functions as substitutes for
multiplication and addition, respectively.

2-21



2 Building Models

Equivalent Ways to Interconnect Systems

Operator Function Resulting Transfer Function

sys1 +
sys2

parallel(sys1,sys2) Systems in parallel

sys1 *
sys2

series(sys2,sys1) Cascaded systems

Feedback Interconnection
You can use the feedback and lft functions to derive closed-loop models.
For example,

sys_f = feedback(tf(1,[1 0]), tf([1 1],[1 2])

computes the closed-loop transfer function from r to y for the feedback loop
shown below. The result is

Transfer function:
s + 2

-------------
s^2 + 3 s + 1

This figure shows the interconnected system in block diagram format.

Feedback Interconnection

You can use the lft function to create more complicated feedback structures.
This function constructs the linear fractional transformation of two systems.
See the reference page for more information.
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Continuous/Discrete Conversions
The commands c2d, d2c, and d2d perform continuous to discrete, discrete to
continuous, and discrete to discrete (resampling) conversions, respectively.

sysd = c2d(sysc,Ts) % Discretization w/ sample period Ts
sysc = d2c(sysd) % Equivalent continuous-time model
sysd1= d2d(sysd,Ts) % Resampling at the period Ts

Various discretization/interpolation methods are available, including
zero-order hold (default), first-order hold, Tustin approximation with or
without prewarping, and matched zero-pole. For example,

sysd = c2d(sysc,Ts,'foh') % Uses first-order hold
sysc = d2c(sysd,'tustin') % Uses Tustin approximation

Discrete DC Motor Model
You can digitize the DC motor plant using the c2d function and selecting an
appropriate sample time. Choosing the right sample time involves many
factors, including the performance you want to achieve, the fastest time
constant in your system, and the speed at which you expect your controller
to run. For this example, choose a time constant of 0.01 second. See “SISO
Example: The DC Motor” on page 2-3 for the construction of the SS object
sys_dc.

Ts=0.01;
sysd=c2d(sys_dc,Ts)

a =
x1 x2

x1 0.96079 -0.00027976
x2 0.006994 0.90484

b =
u1

x1 0.019605
x2 7.1595e-005
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c =
x1 x2

y1 0 1

d =
u1

y1 0

Sampling time: 0.01
Discrete-time model.

To see the discrete-time transfer function for the digital DC motor, use tf
to convert the model.

fd=tf(sysd)

Transfer function:
7.16e-005 z + 6.833e-005
------------------------
z^2 - 1.866 z + 0.8694

Sampling time: 0.01
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Model Order Reduction
You can derive reduced-order models with the following commands.

Model Order Reduction

balreal Input/output balancing

minreal Minimal realization (pole/zero cancellation)

modred State deletion in I/O balanced realization

sminreal Structurally minimal realization

Use minreal to delete uncontrollable or unobservable state dynamics
in state-space models, or to cancel pole/zero pairs in transfer functions
or zero-pole-gain models. Use sminreal to remove any states that are
structurally decoupled from the inputs or outputs. For already minimal
models, you can further reduce the model order using a combination of
balreal and modred.

Example: Gasifier Model
This example presents a model of a gasifier, a device that converts solid
materials into gases. The original model is nonlinear. To load a linearized
version of the model, type

load ltiexamples

at the MATLAB prompt; the gasifier example is stored in the variable named
gasf. If you type

size(gasf)

MATLAB responds with

State-space model with 4 outputs, 6 inputs, and 25 states.

Before attempting model order reduction, inspect the pole and zero locations
by using pzmap(gasf) and then zooming in near the origin. If you don’t
know how to use the zoom feature on plots, see “Zooming” on page 4-47 for
an example.

2-25



2 Building Models

This figure shows the results.

Pole-Zero Map of the Gasifier Model (Zoomed In)

Since the model displays near pole-zero cancellations, it is a good candidate
for model reduction.

SISO Model Order Reduction
As an illustration of the model order reduction tools, this example focuses on a
single input/output pair of the gasifier, input 5 to output 3.

sys35 = gasf(3,5);

To enhance the numerical stability, first scale the system realization with
ssbal.

sys1 = ssbal(sys35);

Then use minreal to eliminate uncontrollable or unobservable states.
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sys1 = minreal(sys1);
size(sys1)

MATLAB responds with

State-space model with 1 output, 1 input, and 15 states.

The result is a 15th order system. Use this command

bode(sys35,sys1);

to compare the Bode magnitude and phase of the 25th order model to the
reduced-order model. This figure shows the result.

Comparison of Full 25-State Model to the 15-State Reduced Order Models

As the figure shows, there is very little difference in the responses.

Finally, try eliminating states that are weakly affecting the I/O map by using
the balreal and modred functions. First, attempt a balanced realization.
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[sys1,G] = balreal(sys1);

Use format short e to view the Hankel singular values stored in variable G.

G =

4.5468e+003
2.6009e+003
1.8601e+003
2.5140e+002
1.5081e+002
1.1993e+001
1.1524e+001
1.0940e+001
2.8766e+000
1.3706e+000
3.5426e-001
2.2556e-002
1.2496e-002
1.0725e-002
6.2703e-005

Small Hankel singular values indicate that the associated states are weakly
coupled. You can try discarding the last five states (associated with the five
smallest Hankel singular values).

sys2 = modred(sys1,11:15); % Down to 10 states
size(sys2)

MATLAB responds with

State-space model with 1 output, 1 input, and 10 states.

Type

bode(sys35,sys2);

to compare the magnitude and phase of the 10th order model to the 25th
order model.

This figure shows the result.
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Comparison of 25- and 10-State Models

The figure shows good agreement until the frequency reaches 5 rad/s. This
may be acceptable since gasifiers are often low bandwidth systems, and
since the models still agree at smaller frequencies. Try experimenting with
discarding more Hankel values. With each further reduction, the match to the
25th order model will continue to degrade.

MIMO Model Order Reduction
You can choose not to restrict yourself to individual input/output pairs. The
following code does model order reduction on the full MIMO gasifier model.

sys1 = ssbal(gasf) % Scaling

% Compute the minimal realization and balance the model
sys2 = minreal(sys1); % Down to 17 states
[sys3,G] = balreal(sys2);
% Discard smallest entry of G by using modred
sys3 = modred(sys3,17); % Down to 16 states
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After you get to 16 states, the reduced-order MIMO model begins to
deteriorate when compared to the full 25-state MIMO model. Try reducing
the model further to see which channels suffer the most degradation.

Acknowledgment
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see Dixon, R., (1999), "Advanced Gasifier Control," Computing & Control
Engineering Journal, IEE, Vol. 10, No. 3, pp. 92-96.

2-30



3

Analyzing Models

LTI Viewer (p. 3-2) How to use the LTI Viewer, a
graphical user interface (GUI) that
simplifies the analysis of linear,
time-invariant systems.

Simulating Models with Arbitrary
Inputs and Initial Conditions
(p. 3-17)

How to use the Linear Simulation
Tool, a GUI that can generate or
import arbitrary input signals and
initial conditions for simulation.

Functions for Time and Frequency
Response (p. 3-31)

Plotting time and frequency
responses of linear models. You can
use these commands when you need
more flexibility than the LTI Viewer
provides.



3 Analyzing Models

LTI Viewer
The LTI Viewer is a GUI for viewing and manipulating the response plots
of linear models. You can display the following plot types for linear models
using the LTI Viewer:

• Step and impulse responses

• Bode and Nyquist plots

• Nichols plots

• Singular values of the frequency response

• Pole/zero plots

• Response to a general input signal

• Unforced response starting from given initial states (only for state-space
models)

Note that time responses and pole/zero plots are available only for transfer
function, state-space, and zero/pole/gain models.

Note The LTI Viewer displays up to six different plot types simultaneously.
You can also analyze the response plots of several linear models at once.

This figure shows an LTI Viewer with two response plots.
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The LTI Viewer with Step and Impulse Response Plots

The next section presents an example that shows you how to import a system
into the LTI Viewer and how to customize the viewer to fit your requirements.

Example: Time and Frequency Responses of the DC
Motor
“SISO Example: The DC Motor” on page 2-3 presents a DC motor example. If
you have not yet built that example, type

load ltiexamples

at the MATLAB prompt. This loads several LTI models, including a
state-space representation of the DC motor called sys_dc.

Opening the LTI Viewer
To open the LTI Viewer, type
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ltiview

This opens an LTI Viewer with an empty step response plot window by default.

Importing Models into the LTI Viewer
To import the DC motor model, select Import under the File menu. This
opens the Import System Data dialog box, which lists all the models available
in your MATLAB workspace.

Import System Data Dialog Box with the DC Motor Model Selected

Select sys_dc from the list of available models and click OK to close the
browser. This imports the DC motor model into the LTI Viewer.

To select more than one model at a time, do the following:

• To select individual (noncontiguous) models, select one model and hold
down the Ctrl key while selecting additional models. To clear any models,
hold down the Ctrl key while you click the highlighted model names.

• To select a list of contiguous models, select the first model and hold down
the Shift key while selecting the last model you want in the list.

The figure below shows the LTI Viewer with a step response for the DC
motor example.
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Step Response for the DC Motor Example in the LTI Viewer

Alternatively, you can open the LTI Viewer and import the DC motor example
directly from the MATLAB prompt.

ltiview('step', sys_dc)

See the ltiview reference page for a complete list of options.

Right-Click Menus
The LTI Viewer provides a set of controls and options that you can access by
right-clicking your mouse. Once you have imported a model into the LTI
Viewer, the options you can select include

• Plot Type — Change the plot type. Available types include step, impulse,
Bode, Bode magnitude, Nichols, Nyquist, and singular values plots.

• Systems — Select or clear any models that you included when you created
the response plot.
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• Characteristics — Add information about the plot. The characteristics
available change from plot to plot. For example, Bode plots have stability
margins available, but step responses have rise time and steady-state
values available.

• Grid — Add grids to your plots.

• Normalize — Scale responses to fit the view (only available for
time-domain plot types).

• Full View — Use automatic limits to make the entire curve visible.

• Properties — Open the Property Editor.

You can use this editor to customize various attributes of your plot. See
Customizing Plot Properties and Preferences for a full description of the
Property Editor.

Alternatively, you can open the Property Editor by double-clicking in an
empty region of the response plot.

Displaying Response Characteristics on a Plot
For example, to see the rise time for the DC motor step response, right-click
your mouse and select Rise Time under Characteristics, as this figure
illustrates.
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Using Right-Click Menus to Display the Rise Time for a Step Response

The rise time is defined as the amount of time it takes the step response to go
from 10% to 90% of the steady-state value.

The LTI Viewer calculates and displays the rise time for the step response.
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DC Motor Step Response with the Rise Time Displayed

To display the values of any plot characteristic marked on a plot, place
your mouse on the blue dot that marks the characteristic. This opens a
data marker with the relevant information displayed. To make the marker
persistent, left-click the blue dot.

For example, this figure shows the rise time value for the DC motor step
response.
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Using Your Mouse to Get the Rise Time Values

Note that you can left-click anywhere on a particular plot line to see the
response values of that plot at that point. You must either place your cursor
over the blue dot or left-click, however, if you want to see the rise time value.

For more information about data markers, see “Data Markers” on page 3-35.

Changing Plot Type
You can view other plots using the right-click menus in the LTI Viewer. For
example, if you want to see the open loop Bode plots for the DC motor model,
select Plot Type and then Bode from the right-click menu.
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Changing the Step Response to a Bode Plot

Selecting Bode changes the step response to a Bode plot for the DC motor
model.
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Bode Plot for the DC Motor Model

Showing Multiple Response Types
If you want to see, for example, both a step response and a Bode plot at the
same time, you have to reconfigure the LTI Viewer. To view different response
types in a single LTI Viewer, select Plot Configurations under the Edit
menu. This opens the Plot Configurations dialog box.
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Using the Plot Configurations Dialog Box to Reconfigure the LTI Viewer

You can select up to six plots in one viewer. Choose the Response type for
each plot area from the right-side menus. There are nine available plot types:

• Step

• Impulse

• Bode (magnitude and phase)

• Bode Magnitude (only)

• Nyquist

• Nichols

• Sigma

• Pole/Zero

• I/O pole/zero

Comparing Multiple Models
This section shows you how to import and manipulate multiple models in
one LTI Viewer. For example, if you have designed a set of compensators to
control a system, you can compare the closed-loop step responses and Bode
plots using the LTI Viewer.

A sample set of closed-loop transfer function models is included (along with
some other models) in the MAT-file ltiexamples.mat. Type
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load ltiexamples

to load the provided transfer functions. The three closed-loop transfer function
models, Gcl1, Gcl2, and Gcl3, are for a satellite attitude controller.

In this example, you analyze the response plots of the Gcl1 and Gcl2 transfer
functions.

Initializing the LTI Viewer with Multiple Plots
To load the two models Gcl1 and Gcl2 into the LTI Viewer, select Import
under the File menu and select the desired models in the LTI Browser. See
“Importing Models into the LTI Viewer” on page 3-4 for a description of how
to select groups of models. If necessary, you can reconfigure the viewer to
display both the step responses and the Bode plots of the two systems using
the Viewer Configuration dialog box. See “Showing Multiple Response Types”
on page 3-11 for a discussion of this feature.

Alternatively, you can open an LTI Viewer with both systems and both the
step responses and Bode plots displayed. To do this, type

ltiview({'step';'bode'},Gcl1,Gcl2)

Either approach opens the following LTI Viewer.
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Multiple Response Plots in a Single LTI Viewer

Inspecting Response Characteristics
To mark the settling time on the step responses presented in this example,
do the following:

• Right-click anywhere in the plot region of the step response plots. This
opens the right-click menu list in the plot region.

• Place your mouse pointer on the Characteristics menu item, and select
Settling Time with your left mouse button.

To mark the stability margins of the Bode plot in this example, open the
right-click menu and select Stability Margins (Minimum Crossing) under
the Characteristics menu.

Your LTI Viewer should now look like this.
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Multiple Plots with Response Characteristics Added

The minimum stability margins, meaning the smallest magnitude phase and
gain margins, are displayed as green and blue markers on the Bode phase
diagram. If you want to see all the gain and phase margins of a system, select
Stability Margins (All Crossings) under the Characteristics menu item.

Toggling Model Visibility
If you have imported more than one model, you can select and clear which
models to plot in the LTI Viewer using right-click menus. For example, if you
import the following three models into the viewer, you can choose to view any
combination of the three you want.

s=tf('s');
sys1=1/(s^2+s+1);
sys2=1/(s^2+s+2);
sys3=1/(s^2+s+3);
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This figure shows how to clear the second of the three models using right-click
menu options.

Using Right-Click Menus to Select/Clear Plotted Systems

The Systems menu lists all the imported models. A system is selected if a
check mark is visible to the left of the system name.
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Simulating Models with Arbitrary Inputs and Initial
Conditions

You can use the Linear Simulation Tool to simulate linear models with
arbitrary input signals and initial conditions.

The Linear Simulation Tool lets you do the following:

• Import input signals from the MATLAB workspace.

• Import input signals from a MAT-file, Microsoft Excel spreadsheet, ASCII
flat-file, comma-separated variable file (CSV), or text file.

• Generate arbitrary input signals in the form of a sine wave, square wave,
step function, or white noise.

• Specify initial states for state-space models.

Default initial states are zero.

Opening the Linear Simulation Tool
To open the Linear Simulation Tool, do one of the following:

• In the LTI Viewer, right-click the plot area and select Plot Types > Linear
Simulation.

• Use the lsim function at the MATLAB prompt:

lsim(modelname)

• In the MATLAB Figure window, right-click a response plot and select
Input data.

Working with the Linear Simulation Tool
The Linear Simulation Tool contains two tabs, Input signals and Initial
states.

After opening the Linear Simulation Tool (as described in “Opening the Linear
Simulation Tool” on page 3-17), follow these steps to simulate your model:

1 Click the Input signals tab, if it is not displayed.
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2 In the Timing area, specify the simulation time vector by doing one of
the following:

• Import the time vector by clicking Import time.

• Enter the end time and the time interval in seconds. The start time
is set to 0 seconds.

3 Specify the input signal by doing one of the following:

• Click Import signal to import it from the MATLAB workspace or a file.
For more information, see “Importing Input Signals” on page 3-20.

• Click Design signal to create your own inputs. For more information,
see “Designing Input Signals” on page 3-27.

4 If you have a state-space model and want to specify initial conditions, click
the Initial states tab. By default, all initial states are set to zero.
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You can either enter state values in the Initial value column, or import
values by clicking Import state vector. For more information about
entering initial states, see “Specifying Initial Conditions” on page 3-29.

5 For a continuous model, select one of the following interpolation methods in
the Interpolation method list to be used by the simulation solver:

• Zero order hold

• First order hold (linear interpolation)

• Automatic (Linear Simulation Tool selects first order hold or zero order
hold automatically, based on the smoothness of the input)

Note The interpolation method is not used when simulating discrete
models.
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6 Click Simulate.

Importing Input Signals
You can import input signals from the MATLAB workspace after opening
the Linear Simulation Tool (see “Opening the Linear Simulation Tool” on
page 3-17). You can also import inputs from a MAT-file, Microsoft Excel
spreadsheet, ASCII flat-file, comma-separated variable file (CSV), or text file.

For information about creating your own inputs, see “Designing Input Signals”
on page 3-27. For an overview of working with the Linear Simulation Tool,
see “Working with the Linear Simulation Tool” on page 3-17.

To import one or more input signals:

1 In the Linear Simulation Tool, click the Input signals tab, if it is not
displayed.

2 Specify the simulation time in the Timing area.

3 Select one or more rows for the input channels you want to import. The
following figure shows an example with two selected channels.
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4 Click Import signal to open the Data Import dialog box. The following
figure shows an example of the Data Import dialog box.
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5 In the Import from list, select the source of the input signals. It can be
one of the following:

• Workspace

• MAT file

• XLS file

• CSV file

• ASCII file

6 Select the data you want to import. The Data Import dialog box contains
different options depending on which source format you selected.

7 Click Import.

For an example of importing input signals, see the following:

• “Example: Loading Inputs from Excel” on page 3-22

• “Example: Importing Inputs from the Workspace” on page 3-23

Example: Loading Inputs from Excel
To load inputs from a Microsoft Excel (XLS) spreadsheet:

1 In the Linear Simulation Tool, click Import signal in the Input signals
tab to open the Data Import dialog box.

2 Select XLS file in the Import from list.

3 Click Browse.

4 Select the file you want to import and click Open. This populates the Data
Import dialog box with the data from the Microsoft Excel spreadsheet.
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Example: Importing Inputs from the Workspace
To load an input signal from the MATLAB workspace:

1 Enter this code to open a response plot with a second-order system:

s=tf('s');
ss=(s+2)/(s^2+3*s+2);
lsim(ss,randn(100,1),1:100);

2 Right-click the plot background and select Input data.
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This opens the Linear Simulation Tool with default input data.

3-24



Simulating Models with Arbitrary Inputs and Initial Conditions

1 Create an input signal for your system in the MATLAB Command Window,
such as the following:

new_signal=[-3*ones(1,20) 2*ones(1,30) 0.5*ones(1,50)]';

2 In the Linear Simulation Tool, click Import signal.

3 In the Data Import dialog box, click, Assign columns to assign the first
column of the input signal to the selected channel.
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4 Click Import. This imports the new signal into the Linear Simulation Tool.
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5 Click Simulate to see the response of your second-order system to the
imported signal.

Designing Input Signals
You can generate arbitrary input signals in the form of a sine wave, square
wave, step function, or white noise after opening the Linear Simulation Tool
(see “Opening the Linear Simulation Tool” on page 3-17).

For information about importing inputs from the MATLAB workspace or from
a file, see “Importing Input Signals” on page 3-20. For an overview of working
with the Linear Simulation Tool, see “Working with the Linear Simulation
Tool” on page 3-17.

To design one or more input signals:

1 In the Linear Simulation Tool, click the Input signals tab (if it is not
displayed).
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2 Specify the simulation time in the Timing area. The time interval (in
seconds) is used to evaluate the input signal you design in later steps of
this procedure.

3 Select one or more rows for the signal channels you want to design. The
following figure shows an example with two selected channels.

4 Click Design signal to open the Signal Designer dialog box. The following
figure shows an example of the Signal Designer dialog box.
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5 In the Signal type list, select the type of signal you want to create. It
can be one of the following:

• Sine wave

• Square wave

• Step function

• White noise

6 Specify the signal characteristics. The Signal Designer dialog box contains
different options depending on which signal type your selected.

7 Click Insert. This brings the new signal into the Linear Simulation Tool.

8 Click Simulate in the Linear Simulation Tool to view the system response.

Specifying Initial Conditions
If your system is in state-space form, you can enter or import initial states
after opening the Linear Simulation Tool (see “Opening the Linear Simulation
Tool” on page 3-17).

For an overview of working with the Linear Simulation Tool, see “Working
with the Linear Simulation Tool” on page 3-17.

You can also import initial states from the MATLAB workspace.
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To import one or more input signals:

1 In the Linear Simulation Tool, click the Initial states tab (if it is not
already displayed).

2 In the Selected system list, select the system for which you want to
specify initial conditions.

3 You can either enter state values in the Initial value column, or import
values from the MATLAB workspace by clicking Import state vector. The
following figure shows an example of the import window:

Note For n-states, your initial-condition vector must have n entries.

4 After specifying the initial states, click Simulate in the Linear Simulation
Tool to view the system response.
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Functions for Time and Frequency Response
The Control System Toolbox provides the LTI Viewer, a GUI that is suitable
for a wide range of applications. There are situations, however, where you
may want a more open and extensible environment. The Control System
Toolbox provides a set of functions that provide the basic time and frequency
domain analysis plots used in control system engineering. These functions
apply to any kind of linear model (continuous or discrete, SISO or MIMO,
or arrays of models). You can only apply the frequency domain analysis
functions to FRD models.

Use the LTI Viewer when a GUI-driven environment is desirable. On the
other hand, use functions when you want customized plots. If you want to
include data unrelated to your models, you must use functions instead of the
LTI Viewer (which only plots model data).

The next sections discuss time and frequency response functions and how to
use these functions to create customized plots of linear model responses.

Time and Frequency Responses
Time responses investigate the time-domain transient behavior of linear
models for particular classes of inputs and disturbances. You can determine
such system characteristics as rise time, settling time, overshoot, and
steady-state error from the time response. The Control System Toolbox
provides functions for step response, impulse response, initial condition
response, and general linear simulations. For example, you can simulate the
response to white noise inputs using lsim and the MATLAB function randn.

In addition to time-domain analysis, the Control System Toolbox provides
functions for frequency-domain analysis using the following standard plots:

• Bode

• Nichols

• Nyquist

• Singular value

This table lists available time and frequency response functions and their use.
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Functions for Frequency and Time Response

Functions Description

bode Bode plot

evalfr Computes the frequency response at a single complex
frequency (not for FRD models)

freqresp Computes the frequency response for a set of
frequencies

gensig Input signal generator (for lsim)

impulse Impulse response plot

initial Initial condition response plot

iopzmap Pole-zero map for each I/O pair of an LTI model

lsim Simulation of response to arbitrary inputs

margin Computes and plots gain and phase margins

nichols Nichols plot

nyquist Nyquist plot

pzmap Pole-zero map

step Step response plot

These functions can be applied to single linear models or LTI arrays.

The functions step, impulse, and initial automatically generate an
appropriate simulation horizon for the time response plots. Their syntax is

step(model_name)
impulse(model_name)
initial(model_name,x0)
% x0 = initial state vector

where model_name is any continuous or discrete LTI model or LTI array.

Frequency-domain plots automatically generate an appropriate frequency
range as well.
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Plotting MIMO Model Responses
For MIMO models, time and frequency response functions produce an array
of plots with one plot per I/O channel (or per output for initial and lsim).
For example,

h = [tf(10,[1 2 10]) , tf(1,[1 1])]
step(h)

produces the following plot.

Step Responses for a MIMO Model

The simulation horizon is automatically determined based on the model
dynamics. You can override this automatic mode by specifying a final time,

step(h,10) % Simulates from 0 to 10 seconds

or a vector of evenly spaced time samples.

t = 0:0.01:10 % Time samples spaced every 0.01 second
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step(h,t)

Right-Click Menus
All the time and frequency response functions provide right-click menus that
allow you to customize your plots. This figure shows the plots from Step
Responses for a MIMO Model on page 3-33, with the right-click menu open.

Using the Right-Click Menu in a Step Response Plot

The options you can select include

• Systems — Select or clear any models that you included when you created
the response plot.

• Characteristics — Add information about the plot. The characteristics
available change from plot to plot. For example, Bode plots have stability
margins available, but step responses have rise time and steady-state
values available.
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• Axes Grouping — Change the grouping of your plots. Available options
are All, None, Inputs, and Outputs. You can group all the plots together,
place each in a separate plot region (none), or group the inputs or outputs
together.

• I/O Selector — Open the I/O Selector dialog box.

Use this dialog box to select/clear which inputs and outputs to plot.

• Normalize — Scale responses to fit the view (only available for
time-domain plot types).

• Full View — Use automatic limits to make the entire curve visible.

• Grid — Add grids to your plots.

• Properties — Open the Property Editor, which you can use to customize
various attributes of your plot. See Customization for a full description of
the Property Editor.

Alternatively, you can open the Property Editor by double-clicking in an
empty region of the response plot.

Data Markers
In addition to right-click menus, the Control System Toolbox provides plot
data markers. These allow you to identify key data points on your plots. This
figure, using the same plot as Step Responses for a MIMO Model on page
3-33, shows markers on the plots.
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Using Plot Markers to Identify Data Points

You can move a data marker by

• Grabbing the black square located at the corner of the marker

• Dragging the marker with your mouse

The time and amplitude values will change as you move the marker. This
does not apply to markers that display plot characteristics (e.g., peak value or
rise time). In the case of plot characteristic data markers, you can view them
by placing your cursor over the dot that represents the active characteristic.
To make the data marker persistent, left-click the marker.

Note Data markers do not apply to the SISO Design Tool, which displays
data about plot characteristics in the status pane at the bottom of the SISO
Design Tool window.
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Right-Click Menus
Right-click on any data marker to open a property menu for the marker.

Property options for the marker include

• Alignment — Change the position of the marker. Available options are
top-right, top-left, bottom-right, and bottom-left.

• FontSize — Change the font size.

• Movable — By default, you can move data markers by clicking and
dragging. Clearing Movable forces the marker to remain at a fixed data
point.

• Delete — Remove the selected marker. Alternatively, left-click anywhere
in the empty plot region to delete all markers in the plot

• Interpolation — By default, data markers linearly interpolate between
points along the plotted curve. Select None to force the markers to snap to
nearest points along the plotted curve.

• Track Mode — The default is to track x- and y-values. You can choose
to track only x- or y-values as well.

Since characteristic data markers are by definition fixed, the right-click
menus for them have fewer options.

These options work the same as they do for the full right-click menu.
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Plotting and Comparing Multiple Systems
You can use the command-line response-plotting functions to plot the response
of continuous and discrete linear models on a single plot. To do so, invoke the
corresponding command-line function using the list sys1,..., sysN of models
as the inputs.

step(sys1,sys2,...,sysN)
impulse(sys1,sys2,...,sysN)
...
bode(sys1,sys2,...,sysN)
nichols(sys1,sys2,...,sysN)
...

All models in the argument lists of any of the response plotting functions
(except for sigma) must have the same number of inputs and outputs.
To differentiate the plots easily, you can also specify a distinctive
color/linestyle/marker for each system just as you would with the plot
command. For example,

bode(sys1,'r',sys2,'y--',sys3,'gx')

plots sys1 with solid red lines, sys2 with yellow dashed lines, and sys3 with
green x markers.

You can plot responses of multiple models on the same plot. These models do
not need to be all continuous-time or all discrete-time.

Example: Comparing Continuous and Discretized Systems
The following example compares a continuous model with its zero-order-hold
discretization.

sysc = tf(1000,[1 10 1000])
sysd = c2d(sysc,0.2)
% ZOH sampled at 0.2 second

step(sysc,'--',sysd,'-')
% Compare step responses

These commands produce the plot shown below.
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Comparison of a Continuous Model to Its Discretized Version

Use this command to compare the Bode plots of the two systems.

bode(sysc,'--',sysd,'-')
% Compare Bode responses

The Control System Toolbox creates this plot.
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Comparison of Bode Plots for a Continuous Model and Its Discretized Version

A comparison of the continuous and discretized responses reveals a drastic
undersampling of the continuous-time system. Specifically, there are hidden
oscillations in the discretized time response and aliasing conceals the
continuous-time resonance near 30 rad/sec.

Creating Custom Plots
Time and frequency response commands are useful for creating custom plots.
You can mix model response plots with other data views using response
commands together with plot, subplot, and hold.

Example: Custom Plots
For example, the following sequence of commands displays the Bode plot, step
response, pole/zero map, and some additional data in a single figure window.

h = tf([4 8.4 30.8 60],[1 4.12 17.4 30.8 60]);
subplot(221)
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bode(h)
subplot(222)
step(h)
subplot(223)
pzmap(h)
subplot(224)
plot(rand(1, 100)) % Any data can go here
title('Some noise')

Your plot should look similar to this illustration.

Example of Model and Nonmodel Data Plotted in One Window

For information about plot, subplot, hold, and other options for plotting
general data, see Basic Plots and Graphs in the MATLAB Function Reference.
These documents are available in the MATLAB online help.
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Note Each of the plots generated by response analysis functions in Example
of Model and Nonmodel Data Plotted in One Window on page 3-41 (bode, step,
and pzmap) has its own right-click menu (similar to those in the LTI Viewer).
To activate the right-click menus, place your mouse in the plot region and
right-click. The menu contents depend on what type of plot you have selected.
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Designing Compensators

SISO Design Tool (p. 4-3) How to use the SISO Design Tool,
which consists of the SISO Design
Task in the Control and Estimation
Tools Manager, a user interface
(UI) that simplifies the task of
designing controllers; the Graphical
Tuning window, for displaying and
manipulating the Bode, root locus,
and Nichols plot designs; and a SISO
Design Task LTI Viewer.

Bode Diagram Design (p. 4-18) Designing compensators using Bode
diagram techniques. This section
presents a DC motor example.

Root Locus Design (p. 4-43) Using an electrohydraulic
servomechanism example, this
section discusses the design of
compensators using root locus
diagram techniques.

Nichols Plot Design (p. 4-68) Using a DC motor example, this
section discusses the design of
compensators using Nichols plot
techniques.

Automated Tuning Design (p. 4-78) Using a DC motor example, this
section adds a PID controller with
the Automated Tuning page on the
SISO Design Task in the Control and
Estimation Tools Manager.
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Multi-Loop Compensator Design
(p. 4-84)

Designing compensators with an
inner loop. This section uses a
position-controlled DC to show the
steps needed to do the design.

Functions for Compensator Design
(p. 4-95)

Functions for custom applications,
MIMO design, pole placement, LQG
design, and Kalman filtering. This
section includes several examples of
these more advanced techniques.

This chapter discusses how to build compensators using functions from
the Control System Toolbox. It begins with a description of the SISO
Design Tool, a graphical user interface (GUI) that simplifies the task of
designing controllers. Through two design examples, a DC motor and an
electrohydraulic servomechanism, this chapter shows you how to use the
SISO Design Tool to design compensators by root locus, Bode diagram, and
Nichols plot design techniques, and how to analyze the resulting designs.

If you need to develop custom applications, or must perform MIMO (multiple
input multiple output) design, the Control System Toolbox provides a set of
commands that implement a variety of design algorithms, including root locus
design, pole placement, and linear quadratic Gaussian (LQG) design.
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SISO Design Tool
The SISO Design Tool is made up of the following:

• The SISO Design Task in the Control and Estimation Tools Manager,
a user interface (UI) that facilitates the design of compensators for
single-input, single-output feedback loops through a series of interactive
pages (referred to in this document as the SISO Design Task node).

• The Graphical Tuning window, a graphical user interface (GUI) for
displaying and manipulating the Bode, root locus, and Nichols plots for the
controller currently being designed. This window is titled SISO Design
for Design Name.

• The LTI Viewer associated with the SISO Design Task. For instructions
on how to operate the LTI Viewer, see “LTI Viewer” on page 3-2.

The SISO Design Tool facilitates the design of compensators for single-input,
single-output feedback loops, and lets you iterate rapidly on your designs and
perform the following tasks:

• Manipulate closed-loop dynamics using root locus techniques.

• Shape open-loop Bode responses.

• Add compensator poles and zeros.

• Add and tune lead/lag networks and notch filters.

• Inspect closed-loop responses (using the LTI Viewer).

• Adjust phase and gain margins.

• Convert models between discrete and continuous time.

• Automate compensator design.

Opening the SISO Design Tool
This section shows how to open the SISO Design Tool with the DC motor
example developed in Chapter 2, “Building Models”

If you have not built the DC motor model, type

load ltiexamples
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at the MATLAB prompt. This loads a collection of linear models, including
the DC motor. To open the SISO Design Tool and import the DC motor, type

sisotool(sys_dc)

at the MATLAB prompt.

This command opens both the SISO Design Task node on the Control and
Estimation Tools Manager and the Graphical Tuning window with the root
locus and open-loop Bode diagrams for the DC motor plotted by default.

SISO Design Task Node (Architecture Page View)
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Graphical Tuning Window with the DC Motor Example

Using the SISO Design Task Node on the Control and
Estimation Tools Manager
The SISO Design Task node in the Control and Estimation Tools Manager
contains the following pages for specifying controller design and behavior:

• Architecture:

- Change the feedback structure and label signals and blocks.

- Configure loops for multi-loop design by opening signals to remove the
effects of other feedback loops.

- Import models into your system.
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- Convert the sample time of the system or switch between different
sample times to design different compensators.

• Compensator Editor:

- Directly edit compensator poles, zeros, and gains.

- Add or remove compensator poles and zeros.

• Graphical Tuning:

- Configure design plots in the Graphical Tuning window.

- Use design plots to graphically manipulate system response.

• Analysis Plots:

- Configure analysis plots in the LTI Viewer.

- Use analysis plots to view the response of open- or closed-loop systems.

• Automated Tuning:

- Automatically generate compensators using optimization-based, PID,
internal model control (IMC), linear-quadratic-Gaussian (LQG), or loop
shaping methods.

- Use a response optimization tool that automatically tunes the system
to satisfy design requirements (available when you have the Simulink®

Response Optimization product).

Importing Models into the SISO Design Tool
If you type

sisotool

at the MATLAB prompt, the Control and Estimation Tools Manager opens
with the SISO Design Task node and an empty Graphical Tuning window.
You can import the DC motor model by clicking System Data on the
Architecture page, shown in the following figure.
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This opens the System Data dialog box, which is shown in the following figure.

To import the DC motor model:
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1 Select G and click Browse. The Model Import dialog box opens, as shown
in the following figure.

2 Select sys_dc from the Available Models list. Click Import, and then
click Close. You can now see sys_dc loaded into G in the System Data
dialog box.

3 Click OK. The Graphical Tuning window is updated with the DC motor
model, as shown in the following figure.
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Feedback Structure
The SISO Design Tool by default assumes that the compensator is in the
forward path, i.e., that the feedback structure looks like this figure.

Default Feedback Structure — Compensator in the Forward Path

In this figure, the lettered boxes represent the following:

• G — plant

• H — sensor dynamics
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• F — prefilter

• C — compensator

The default values for F, H, and C are all 1 (you can see this in the System
Data dialog box). Note that this means that by default, the compensator has
unity gain. G contains the DC motor model, sys_dc.

Alternative Feedback Structures
While in the Architecture page, click Control Architecture to open the
Control Architecture dialog box.

You can use the Signs and Blocks and Signals panes to change the sign of
the feedback signal into a summing junction and rename blocks and signals
in the diagram respectively. See "Modifying Block Diagram Structure" for
more details.

On any page in the SISO Design Task node on the Control and Estimation
Tools Manager, click Show Architecture to see the current architecture and
a list of the identifiers and names associated with the components.
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Loop Responses
As you select different compensator designs, you may find it convenient to be
able to examine the various loop responses (for example, step or impulse
responses) for a particular design. To view, for example, the closed-loop step
response, click the Analysis Plots tab. This opens the Analysis Plots page
containing the list of available responses, with none initially selected, as
shown in the following figure.
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Select the plot types for each plot in the Analysis Plots group box, and then
select the plots to appear in the Plots list in the Contents of Plots table, as
shown in the following figure.
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Analysis Plots Loop Response Selection

After you have selected a plot, the LTI Viewer with the appropriate response(s)
opens. You can also click Show Analysis Plot to open the LTI Viewer.

The following figure shows the resulting plot for the closed-loop step response
of the DC motor.
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LTI Viewer Showing the Step Response for the DC Motor

As this plot shows, the step response of the DC motor is about 1.5 seconds,
which is too slow for many applications. Also, there is a large steady-state
error. The following sections show how to use Bode diagram techniques for
improving the response time and steady-state error of the DC motor step
response.

As you select different compensator designs, the LTI Viewer associated with
your SISO Design Task will automatically update the response plots you
have chosen for a particular design.

Using the Graphical Tuning Window
The Graphical Tuning window is a graphical user interface (GUI) for
displaying and manipulating the Bode, root locus, and Nichols plots for the
controller currently being designed. Most tasks can be accomplished using
the pages in the SISO Design Task node on the Control and Estimation
Tools Manager. Many of these tasks can also be done in the Graphical Tuning
window, though you will find it easier to use the pages in the SISO Design
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Task node on the Control and Estimation Tools Manager. However, there are
a few tasks, such as adjusting the bandwidth, that can only be done using the
Graphical Tuning window.

This section describes some of the methods for navigating in and manipulating
the appearance of the Graphical Tuning window.

Graphical Tuning Window Display
The Graphical Tuning window shows

• Poles as x’s

• Zeros as o’s

• Gain and phase margins (by default) in the lower-left corners of the Bode
magnitude and phase plots

Changing Units on a Plot
The SISO Design Tool provides editors for setting plot options in the Graphical
Tuning window. If you want, for example, to change the frequency units on
all the Bode plots created in the SISO Design Tool from rad/s to Hertz, select
SISO Tool Preferences from the Edit menu in the SISO Design Task node
on the Control and Estimation Tools Manager, as shown next.
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This opens the SISO Tool Preferences dialog box.
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Use the options on the Units page to make the change. This unit change
persists for the entire session.

For more information about property and preference settings, see
Customization.

Right-Click Menus
The SISO Design Tool has right-click menus available in any of the plot
regions. Open the Bode magnitude menu by right-clicking your mouse in the
white space of the Bode magnitude plot. The following menu appears.

Right-Click Menu for the Bode Magnitude Plot

Although the menus for each plot generally contain the same options, there
are some options specific to each plot type; for example, where the Closed-Loop
Bode Editor right-click menu has a Select Compensator option, the
Open-Loop Bode Editor right-click menu has a Gain Target option instead.

The right-click menus contain numerous features. The DC motor example
uses many of the available features; for a complete discussion of the right-click
menus, see the help for the SISO Design Tool in "Using the SISO Design Tool
and the LTI Viewer."
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Bode Diagram Design
One technique for compensator design is to work with Bode diagrams of the
open-loop response (loop shaping). Using Bode diagrams, you can design to
gain and phase margin specifications, adjust the bandwidth, and add notch
filters for disturbance rejection.

Example: DC Motor
The following sections use the DC motor example to show how create a
compensator using Bode diagram design techniques. From “SISO Example:
The DC Motor” on page 2-3, the transfer function of the DC motor is

Transfer function:
1.5

------------------
s^2 + 14 s + 40.02

For this example, the design criteria are as follows:

• Rise time of less than 0.5 second

• Steady-state error of less than 5%

• Overshoot of less than 10%

• Gain margin greater than 20 dB

• Phase margin greater than 40 degrees

Adjusting the Compensator Gain
The LTI Viewer Showing the Step Response for the DC Motor on page 4-14,
shows that the closed-loop step response is too slow. The simplest approach to
speeding up the response is to increase the gain of the compensator.

To increase the gain:

1 Click the Compensator Editor tab to open the Compensator Editor
page.

2 Select C from the compensator selection list.
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3 In the text box to the right of the equal sign in the Compensator area,
enter 38 and press Enter.

Adjusting Compensator Gain on the Compensator Editor Page

The SISO Design Tool calculates the compensator gain, and Bode and root
locus graphs in the Graphical Tuning window are updated.

Alternatively, you can set the gain in the Graphical Tuning window by
grabbing the Bode magnitude line and dragging it upward. The gain and poles
change as the closed-loop set point is recomputed, and the new compensator
value is updated in the Compensator Editor page.

Adjusting the Bandwidth
Because the design requirements include a 0.5-second rise time, try setting
the gain so that the DC crossover frequency is about 3 rad/s. The rationale for
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setting the bandwidth to 3 rad/s is that, to a first-order approximation, this
should correspond to about a 0.33-second time constant.

To make the crossover easier to see, select Grid from the right-click menu.
This creates a grid for the Bode magnitude plot. Left-click the Bode magnitude
plot and drag the curve until you see the curve crossing over the 0 dB line (on
the y axis) at 3 rad/s. This changes both the SISO Design Tool display and
the LTI Viewer step response.

For a crossover at 3 rad/s, the compensator gain should be about 38. By
default, the Graphical Tuning window shows gain and phase margin
information in the lower-left corners of the Bode diagrams. In the Bode
magnitude plot, it also tells you if your closed-loop system is stable or unstable.

This figure shows the Graphical Tuning window.
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Adjusting Bandwidth in the Graphical Tuning Window

This plot shows the associated closed-loop step response in the LTI Viewer.
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Closed-Loop Step Response for the DC Motor with a Compensator Gain = 38

The step response shows that the steady-state error and rise time have
improved somewhat, but you must design a more sophisticated controller
to meet all the design specifications, in particular, the steady-state error
requirement.

Adding an Integrator
One way to eliminate steady-state error is to add an integrator. To add an
integrator:

1 Click the Compensator Editor tab to open the Compensator Editor
page.

2 Right-click anywhere in the Dynamics table for the right-click menu, and
then select Add Pole/Zero > Integrator.

The following figures show this process.
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Adding an Integrator in the Dynamics Table
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Editable Integrator Parameters

Notice adding the integrator changed the crossover frequency of the system.
Readjust the compensator gain in the Compensator Editor page to bring
the crossover back to 3 rad/s; the gain should be about 100.

After you have added the integrator and readjusted the compensator gain, the
Graphical Tuning window shows a red ‘x’ at the origin of the root locus plot.
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Integrator on the Root Locus Plot

The following figure shows the closed-loop step response.
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Step Response for the DC Motor with an Integrator in the Compensator

The step response is settling around 1, which satisfies the steady-state
error requirement. This is because the integrator forces the system to zero
steady-state error. The figure shows, however, that the peak response is 1.3,
or about 30% overshoot, and that the rise time is roughly 0.4 second. So a
compensator consisting of an integrator and a gain is not enough to satisfy
the design requirements, which require that the overshoot be less than 10%.

Adding a Lead Network
Part of the design requirements is a gain margin of 20 dB or greater and
a phase margin of 40° or more. In the current compensator design, the
gain margin is 11.5 dB and the phase margin is 38.1°, both of which fail
to meet the design requirements. So two goals left are to shorten the rise
time while improving the stability margins. One approach is to increase the
gain to speed up the response, but the system is already underdamped, and
increasing the gain will decrease the stability margin as well. You might try
experimenting with the compensator gain to verify this. The only option left is
to add dynamics to the compensator.
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One possible solution is to add a lead network to the compensator. To add
the lead network:

1 Click the Compensator Editor tab to open the Compensator Editor
page.

2 In the Dynamics table, right-click and then select Add Pole/Zero > Lead.

The following figures show the process of adding a lead network to your
controller.

Adding a Lead Network to the DC Motor Compensator on the Compensator
Editor Page
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Lead Network Added

Editable fields are shown in the Edit Selected Dynamics group box (right
side of page) when an item in the Dynamics table has been selected, as
shown in the following figure.

4-28



Bode Diagram Design

For this example, change Real Zero to -7.38 and change Real Pole to -11.1.

You can also add a lead network using the Graphical Tuning window.
Right-click in the Bode graph, select Add Pole/Zero > Integrator, place the
‘x’ on the plot where you want to add the lead network, and then left-click
to place it. The Compensator Editor page is updated to include the new
lead network in the Dynamics table.

Your Graphical Tuning window and LTI Viewer plots should now look similar
to these.
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Root Locus, Bode, and Step Response Plots for the DC Motor with a Lead
Network

The Step Response plot shows that the rise time is now about 0.4 second and
peak response is 1.25 rad/s (i.e., the overshoot is about 25%). Although the rise
time meets the requirement, the overshoot is still too large, and the stability
margins are still unacceptable, so you must tune the lead parameters.

Moving Compensator Poles and Zeros
To improve the response speed, edit the selected dynamics for the lead
network in the Edit Selected Dynamics group box on the Compensator
Editor page.

1 Change the value of the lead network zero (Real Zero) to move it closer to
the left-most (slowest) pole of the DC motor plant (denoted by a blue ‘x’).

2 Change the value of the lead network pole (Real Pole) to move it to the
right. Notice how the gain margin increases (as shown in the Graphical
Tuning window) as you do this.

As you tune these parameters, look at the LTI Viewer. You will see the
closed-loop step response alter with each parameter change you make.
The following figure shows the final values for a design that meets the
specifications.
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Graphical Tuning Window with Final Design Parameters for the DC Motor
Compensator

The values for this final design are as follows:

• Poles at 0 and -28

• Zero at -4.3

• Gain = 84

Enter these values directly in the Edit Selected Dynamics group box in the
Compensator Editor page, shown as follows (Integrator is already set to 0).
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Entering Final Design Parameters on the Compensator Editor Page
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Step Response for the Final Compensator Design

The step response shows that the rise time is 0.45 second, and the peak
amplitude is 1.03 rad/s, or an overshoot of 3%. These results meet the design
specifications.

Adding a Notch Filter
If you know that you have disturbances to your system at a particular
frequency, you can use a notch filter to attenuate the gain of the system at
that frequency. To add a notch filter, click the Compensator Editor tab to
open the Compensator Editor page. Right-click in the Dynamics table and
select Add Pole/Zero > Notch, as shown next.
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Adding a Notch Filter with the Dynamics Right-Click Menu

Default values for the filter are supplied, as shown next.
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Notch Filter Default Values

The following figure shows the result in the Graphical Tuning window.
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Notch Filter Added to the DC Motor Compensator

To see the notch filter parameters in more detail, click the Zoom In

icon on the Graphical Tuning window. In the Open-Loop Bode Editor, press
the left mouse button and drag your mouse to draw a box around the notch
filter. When you release the mouse, the Graphical Tuning window will zoom
in on the selected region.

To understand how adjusting the notch filter parameters affects the filter,
consider the notch filter transfer function.
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The three adjustable parameters are ξ1, ξ2, and ωn. The ratio of ξ2/ξ1 sets the
depth of the notch, and ωn is the natural frequency of the notch.

This diagram shows how moving the red and black diamonds changes these
parameters, and hence the transfer function of the notch filter.

A Close Look at Notch Filter Parameters

In the Dynamics table on the Compensator Editor page, select the row
containing the newly added notch filter. The editable fields appear in the Edit
Selected Dynamics group box, as shown next.
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Editing Notch Filter Parameters

Modifying a Prefilter
You can use the SISO Design Tool to modify the prefilter in your design.
Typical prefilter applications include:

• Achieving (near) feedforward tracking to reduce load on the feedback loop
(when stability margins are poor)

• Filtering out high frequency content in the command (reference) signal to
limit overshoot or to avoid exciting resonant modes of the plant

A common prefilter is a simple lowpass filter that reduces noise in the input
signal.
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Open the Bode diagram for the prefilter by opening the right-click menu in
the Closed-Loop Bode Editor in the Graphical Tuning window, and then
selecting Select Compensators > F(F).

Selecting the Prefilter in the Graphical Tuning Window

For clarity, the previous figure does not show the open-loop Bode diagram for
the compensator (C). To remove the Bode diagram from the Graphical Tuning
window, go to the SISO Design Task node on the Control and Estimation
Tools Manager, click the Graphical Tuning tab, and for Plot 2, Open Loop 1,
select Plot type None.
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Prefilter Bode Diagram

If you haven’t imported a prefilter, the default is a unity gain. You can add
poles and zeros and adjust the gain using the same methods as you did when
designing the compensator (C) on the Compensator Editor page.

A quick way to create a lowpass roll-off filter is to add a pair of complex
poles. To do this, first click the Compensator Editor tab and change
the compensator to F. Right-click in the Dynamics table and select Add
Pole/Zero > Complex Pole. Select this line to show the editable parameters
in the Edit Selected Dynamics group box. For this example, try to place
the poles at about 50 rad/s. The following figure shows the poles added to
the prefilter Bode diagram.
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Adding a Complex Pair of Poles to the Prefilter Bode Diagram

By default, the damping ratio of the complex pair is 1.0, which means that
there are two real-valued poles at about -50 rad/s. The green curve, which
represents the prefilter Bode response, shows the -3 dB point for the roll-off
is at about 50 rad/s. The magenta curve, which represents the closed-loop
response from the prefilter to the plant output, shows that after the -3 dB
point, the closed-loop gain rolls off at -40 dB/decade to provide some noise
disturbance rejection.

Importing a Prefilter
An alternative approach is to design a prefilter using Control System Toolbox
commands like ss or tf and importing the design directly into the prefilter.
For example, to create the lowpass filter using zpk, try

prefilt=zpk([],[-35 + 35i, -35 - 35i],1)
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and import prefilt by clicking System Data on the Architecture page.
This opens the System Data dialog box. Click Browse to open the Model
Import dialog box, as shown next.

Importing a Prefilter

Select prefilt from the Available Models list and click Import to import
the prefilter model. Click Close to close the Import Model dialog box. After
you have imported the prefilter model, you can modify it using the same
methods as described in this chapter for compensator design.
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Root Locus Design
A common technique for meeting design criteria is root locus design. This
approach involves iterating on a design by manipulating the compensator
gain, poles, and zeros in the root locus diagram.

As system parameter k varies over a continuous range of values, the root locus
diagram shows the trajectories of the closed-loop poles of the feedback system.
Typically, the root locus method is used to tune the loop gain of a SISO control
system by specifying a designed set of closed-loop pole locations.

Consider, for example, the tracking loop

where is the plant, is the sensor dynamics, and is a scalar gain to
be adjusted. The closed-loop poles are the roots of

The root locus technique consists of plotting the closed-loop pole trajectories
in the complex plane as varies. You can use this plot to identify the gain
value associated with a desired set of closed-loop poles.

The DC motor design example focused on the Bode diagram feature of the
SISO Design Tool. Each of the design options available on the Bode diagram
side of the tool have a counterpart on the root locus side. To demonstrate
these techniques, this example presents an electrohydraulic servomechanism.

The SISO Design Tool’s root locus and Bode diagram design tools provide
complementary perspectives on the same design issues; each perspective
offers insight into the design process. Because the SISO Design Tool shows
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both root locus and Bode diagrams, you can also choose to combine elements
of both perspectives in making your design decisions.

Example: Electrohydraulic Servomechanism
A simple version of an electrohydraulic servomechanism model consists of

• A push-pull amplifier (a pair of electromagnets)

• A sliding spool in a vessel of high-pressure hydraulic fluid

• Valve openings in the vessel to allow for fluid to flow

• A central chamber with a piston-driven ram to deliver force to a load

• A symmetrical fluid return vessel

This figure shows a schematic of this servomechanism.

Electrohydraulic Servomechanism

The force on the spool is proportional to the current in the electromagnet coil.
As the spool moves, the valve opens, allowing the high-pressure hydraulic
fluid to flow through the chamber. The moving fluid forces the piston to move
in the opposite direction of the spool. Control System Dynamics, by R. N.
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Clark, (Cambridge University Press, 1996) derives linearized models for the
electromagnetic amplifier, the valve spool dynamics, and the ram dynamics; it
also provides a detailed description of this type of servomechanism.

If you want to use this servomechanism for position control, you can use
the input voltage to the electromagnet to control the ram position. When
measurements of the ram position are available, you can use feedback for the
ram position control, as shown in the following figure.

Feedback Control Structure for an Electrohydraulic Servomechanism

Your task is to design the compensator, C(s).

Plant Transfer Function
If you have not already done so, type

load ltiexamples

to load a collection of linear models that include Gservo, which is a linearized
plant transfer function for the electrohydraulic position control mechanism.
Typing Gservo at the MATLAB prompt opens the servomechanism (plant)
transfer function.

Gservo

Zero/pole/gain from input "Voltage" to output "Ram position":
40000000

-----------------------------
s (s+250) (s^2 + 40s + 9e004)
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Design Specifications
For this example, you want to design a controller so that the step response of
the closed-loop system meets the following specifications:

• The 2% settling time is less than 0.05 second.

• The maximum overshoot is less than 5%.

The remainder of this section discusses how to use the SISO Design Tool to
design a controller to meet these specifications.

Opening the SISO Design Tool
Open the SISO Design Tool and import the model by typing

sisotool(Gservo)

at the MATLAB prompt. This opens the SISO Design Task node in the
Control and Estimation Tools Manager and the Graphical Tuning window
with the servomechanism plant imported.
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Graphical Tuning Window Showing the Root Locus and Bode Plots for the
Electrohydraulic Servomechanism Plant

Zooming
Click the Zoom In

icon in the Graphical Tuning window. Press and hold the mouse’s left button
and drag the mouse to select a region for zooming. For this example, reduce
the root locus region to about -500 to 500 in both the x- and y-axes. This figure
illustrates the zooming in process.
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Zooming In on a Region in the Root Locus Plot

As in the DC motor example, click the Analysis Plots tab to set up loop
responses. Select Plot Type Step for Plot 1, then select plot 1 for Closed-Loop
r to y, shown as follows.
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Analysis Plots Loop Response Selection

For more information about the Analysis Plots page, see Analysis Plots in
"Using the SISO Design Tool and LTI Viewer."

Selecting the plot for Closed-Loop r to y opens the associated LTI Viewer.

You should now see both the Graphical Tuning window and the LTI Viewer.
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Graphical Tuning Window and Associated LTI Viewer for the Electrohydraulic
Servomechanism

The step response plot shows that the rise time is on the order of 2 seconds,
which is much too slow given the system requirements. The following sections
describe how to use frequency design techniques in the SISO Design Tool
to design a compensator that meets the requirements specified in “Design
Specifications” on page 4-46.

Changing the Compensator Gain
The simplest thing to do is change the compensator gain, which by default
is unity. You can change the gain by entering the value directly in the
Compensator Editor page.

The following figure shows this procedure.

4-50



Root Locus Design

Changing the Compensator Gain in the Root Locus Plot with the Compensator
Editor Page

Enter the compensator gain in the text box to the right of the equal sign as
shown in the previous figure. The Graphical Tuning window automatically
replots the graphs with the new gain.

Experiment with different gains and view the closed-loop response in the
associated LTI Viewer.

Alternatively, you can change the gain by grabbing the red squares on the root
locus plot in the Graphical Tuning window and moving them along the curve.
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Closed-Loop Response
Change the gain to 20 by editing the text box next to the equal sign on the
Compensator Editor page. Notice that the locations of the closed-loop poles
on the root locus are recalculated for the new gain.

This figure shows the associated closed-loop step response for the gain of 20.

Step Response with the Settling Time for C(s) = 20

This closed-loop response does not meet the desired settling time requirement
(0.05 seconds or less) and exhibits unwanted ringing. “Adding Poles and Zeros
to the Compensator” on page 4-52 shows how to design a compensator so that
you meet the required specifications.

Adding Poles and Zeros to the Compensator
You may have noticed that increasing the gain makes the system
under-damped. Further increases force the system into instability, so meeting
the design requirements with only a gain in the compensator is not possible.
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There are three sets of parameters that specify the compensator: poles, zeros,
and gain. After you have selected the gain, you can add poles or zeros to
the compensator.

Adding Poles to the Compensator
You can add complex poles on the Compensator Editor page. Click the
Compensator Editor tab, make sure C is selected, and then right click
in the Dynamics table. Select Add Pole/Zero > Complex Pole. Use the
Edit Selected Dynamics group box to modify pole parameters, as shown in
the following figure. For more about entering pole parameters directly, see
“Editing Compensator Pole and Zero Locations” on page 4-57.

Adding a Complex Pair of Poles to the Compensator on the Compensator
Editor Page
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You can also add a complex pole pair directly on the root locus plot using the
Graphical Tuning window. Right-click in the root locus plot and select Add
Pole/Zero > Complex Pole. Click in the root locus plot region where you
want to add one of the complex poles.

Complex poles added in this manner are automatically added to the
Dynamics table in the Compensator Editor page.

After you have added the complex pair of poles, the LTI Viewer response plots
change and both the root locus and Bode plots show the new poles.

This figure shows the Graphical Tuning window with the new poles added.
For clarity, you may want to zoom out further, as was done here.

Result of Adding a Complex Pair of Poles to the Compensator
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Adding Zeros to the Compensator
The procedure for adding zeros to the compensator is exactly the same. You
add zeros in the Dynamics table on the Compensator Editor page or
directly on the Root Locus plot in the Graphical Tuning window.

To add the zeros using the Compensator Editor page, click the
Compensator Editor tab, make sure C is selected, and then right click
in the Dynamics table. Select Add Pole/Zero > Complex Zero. Use the
Edit Selected Dynamics group box to modify zero parameters, as shown.
For more about entering zero parameters directly, see “Editing Compensator
Pole and Zero Locations” on page 4-57.

Adding Complex Zeros to the Compensator on the Compensator Editor Page

You can also add complex zeros directly on the root locus plot using the
Graphical Tuning window by right-clicking in the root locus plot, selecting
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Add Pole/Zero > Complex Zero, and then clicking in the root locus plot
region where you want to add one of the zeros.

Complex zeros added in this manner are automatically added to the
Dynamics table on the Compensator Editor page.

After you have added the complex zeros, the LTI Viewer response plots change
and both the root locus and Bode plots show the new zeros.

Electrohydraulic Servomechanism Example with Complex Zeros Added

If your step response is unstable, lower the gain by grabbing a red box in the
right-side plane and moving it into the left-side plane. In this example, the
resulting step response is stable, but it still doesn’t meet the design criteria
since the 2% settling time is greater than 0.05 second.

As you can see, the compensator design process can involve some trial and
error. You can try dragging the compensator poles, compensator zeros, or the
closed-loop poles around the root locus until you meet the design criteria.

“Editing Compensator Pole and Zero Locations” on page 4-57, shows you how
to modify the placement of poles and zeros by specifying their numerical
values on the Compensator Editor page. It also presents a solution that
meets the design specifications for the servomechanism example.
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Editing Compensator Pole and Zero Locations
A quick way to change poles and zeros is simply to grab them with your
mouse and move them around the root locus plot region. If you want to specify
precise numerical values, however, you should use the Compensator Editor
page in the SISO Design Task node on the Control and Estimation Tools
Manager to change the gain value and the pole and zero locations of your
compensator, as shown.

Using the Compensator Editor Page to Add, Delete, and Move Compensator
Poles and Zeros

You can use the Compensator Editor page to

• Add compensator poles and zeros.

• Delete compensator poles and zeros.

• Edit the compensator gain.
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• Edit the locations of compensator poles and zeros.

Adding Compensator Poles and Zeros
To compensator poles or zeros:

1 Select the compensator (in this example, C) in the list box to the left of
the equal sign.

2 Right-click in the Dynamics table for the pop-up menu.

3 From the pop-up menu, select Add Pole/Zero > Complex Pole or Add
Pole/Zero > Complex Zero.

4 Use the Edit Selected Dynamics group box to modify pole or zero
parameters.

Deleting Compensator Poles and Zeros
To delete compensator poles or zeros:

1 Select the compensator (in this example, C) in the list box to the left of
the equal sign.

2 Select the pole or zero in the Dynamics table that you want to delete.

3 Right-click and select Delete Pole/Zero from the pop-up menu.

Editing Gain, Poles, and Zeros
To edit compensator gain:

1 Select the compensator to edit in the list box to the left of the equal sign
in the Compensator area.

2 Enter the gain value in the text box to the right of the equal sign in the
Compensator area.

To edit pole and zero locations:

1 Select the pole or zero you want to edit in the Dynamics table.
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2 Change current values in the Edit Selected Dynamics group box.

For this example, edit the poles to be at and the zeros at
. Set the compensator gain to 23.3.

Your Graphical Tuning window now looks like this.

Graphical Tuning Window with the Final Values for the Electrohydraulic
Servomechanism Design Example

To see that this design meets the design requirements, look at the step
response of the closed-loop system.
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Closed-Loop Step Response for the Final Design of the Electrohydraulic
Servomechanism Example

The step response looks good. As you can see, the settling time is less than
0.05 second, and the overshoot is less than 5%. You have met the design
specifications.

Viewing Damping Ratios
The Graphical Tuning window provides design requirements that can make it
easier to meet design specifications. If you want to place, for example, a pair
of complex poles on your diagram at a particular damping ratio, select Design
Requirements > New from the right-click menu in the root locus graph.

This opens the New Design Requirement dialog box.
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Applying damping ratio requirements to the root locus plot results in a pair of
shaded rays at the desired slope, as this figure shows.

Root Locus with 0.707 Damping Ratio Lines
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Try moving the complex pair of poles you added to the design so that they are
on the 0.707 damping ratio line. You can experiment with different damping
ratios to see the effect on the design.

If you want to change the damping ratio, select Design Requirements >
Edit from the right-click menu. This opens the Edit Design Requirements
dialog box.

Specify the new damping ratio requirement in this dialog box.

An alternate way to adjust a requirement is to left-click the requirement itself
to select it. Two black squares appear on the requirement when it is selected.
You can then drag it with your mouse anywhere in the plot region.

If you want to add a different set of requirements, for example, a settling time
requirement, again select Design Requirements > Edit from the right-click
menu to open the New Requirements dialog box and choose Settling time
from the pull-down menu. You can have multiple types of design requirements
in one plot, or more than one instance of any type.

The types of requirements available depend on which view you use for
your design. See Design Requirements for a description of all the design
requirement options available in the SISO Design Tool.

Exporting the Compensator and Models
Now that you have successfully designed your compensator, you may want
to save your design parameters for future implementation. You can do this
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by selecting Export from the File menu on the SISO Design Task node on
the Control and Estimation Tools Manager or from the File menu on the
Graphical Tuning window. Both methods open the SISO Tool Export dialog
box.

You may leave the model list as all components or you may select the
components for a particular design by selecting the design name from the
pull-down list.

The variables listed in the Export As column are either previously named
by you (in the System Data dialog box) or have default names. To export
your compensator to the workspace:

1 Select Compensator C in the Component column. If you want to change
the export name, double-click in the cell for Compensator C.

2 Click Export to Workspace.

If you go to the MATLAB prompt and type

who

the compensator is now in the workspace, in the variable named C.

Type
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C

to see that this variable is stored in zpk format.

To select multiple components, use the Shift key if they are all adjacent and
the Ctrl key if they are not.

Clicking Export to Disk opens the Export to Disk dialog box.

You can save your models as MAT-files in any directory you want. The default
name for the MAT-file is the name of your original model; you can change
the name to anything you want. If you save multiple components, they are
stored in a single MAT-file.

Storing and Retrieving Intermediate Designs
You can store and retrieve intermediate compensators while you iterate on
your compensator design. To store intermediate designs, click the Design
History node or Store Design, both located on the SISO Design Task node
in the Control and Estimation Tools Manager.

Alternatively, you can select Store/Retrieve from the Designs menu in
the Graphical Tuning window. Using either method, the following Design
History page opens.
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If you have any intermediate designs already stored, they will appear on
the Design History page.

Click Store Design to save the current design with the default name Design;
the suffix increments when you store additional compensators without
renaming them. You can rename the design by right-clicking the name under
the node and selecting Rename.

To retrieve intermediate designs, again click the Design History node or
select Store/Retrieve from the Designs menu. From the Design History
page, select the design to retrieve, and then click Retrieve Design, as shown
next.
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Design History Page Listing Current Designs

The Graphical Tuning window automatically reverts to the selected
compensator design.

Click any design name in the Design History to view a snapshot summary of
the design, as shown in the following figure.
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Design Snapshot Summary

Return to the compensator list by clicking the Design History node.

You can delete an intermediate design by selecting it from the Design
History page and clicking Delete.
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Nichols Plot Design
An alternative method for designing compensators is to use the Nichols
plot, which combines gain and phase information in a single plot. The
combination of the two is useful when you are designing to gain and phase
margin specifications.

You can design compensators with the SISO Design Tool by using Nichols plot
techniques. This section repeats the DC motor compensator design presented
in “Example: DC Motor” on page 4-18, only this time the focus is on Nichols
plot techniques. The design strategy, however, is the same.

1 Adjust the compensator gain to improve the rise time.

2 Add an integrator to eliminate steady-state error.

3 Add a lead network to further improve the rise time while minimizing
overshoot.

DC Motor Example
From “SISO Example: The DC Motor” on page 2-3, the transfer function of
the DC motor is

Transfer function:
1.5

------------------
s^2 + 14 s + 40.02

This example uses the design criteria specified in “Design Specifications”
on page 4-46:

• Rise time of less than 0.5 second

• Steady-state error of less than 5%

• Overshoot of less than 10%

• Gain margin greater than 20 dB

• Phase margin greater than 40 degrees
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Opening a Nichols Plot
To open the SISO Design Tool with a Bode diagram and a Nichols plot, use
these commands:

load ltiexamples
sisotool({'bode','nichols'},sys_dc)

The SISO Design Task node on the Control and Estimation Tools Manager
opens and the Graphical Tuning window with sys_dc opens.

Graphical Tuning Window with a Bode Diagram and a Nichols Plot

Adjusting the Compensator Gain
You can adjust the compensator gain by entering a value in the Compensator
Editor page.
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1 Click the Compensator Editor tab to open the Compensator Editor
page.

2 Select C from the compensator selection list.

3 In the text box to the right of the equal sign in the Compensator area,
enter the gain amount and press Enter.

Adjusting Compensator Gain in the Compensator Editor Page

In this example, the new gain is 112.

You can also adjust the compensator gain in the Graphical Tuning window
by moving the Nichols curve up and down with your mouse. To do this, place
your mouse over the curve. The cursor turns into a hand. Left-click and move
the curve up to increase the gain. When you adjust the gain in this manner,
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the compensator gain is automatically updated in the Compensator Editor
page.

Click the Analysis Plots tab to set the analysis plots. Select Plot Type
Step for Plot 1, and then select plot 1 for Closed-Loop r to y, as shown in
the following figure, to open a linked LTI Viewer with the closed-loop step
response from reference signal r to output signal y.

Analysis Plots Loop Response Selection
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LTI Viewer Step Response for Compensator Gain = 112

The rise time is quite fast, about 0.15 second, but the overshoot is 18.4%
and the steady-state is about 0.82.

Adding an Integrator
One approach to eliminating the steady-state error is to add an integrator.

To add an integrator:

1 Click the Compensator Editor tab to open the Compensator Editor
page.

2 Right-click in the Dynamics table and select Add Pole/Zero > Integrator.

This figure shows the process.
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Adding an Integrator in the Dynamics Table

You can also add an integrator by selecting Add Pole/Zero > Integrator
from the right-click menu in the Graphical Tuning window. When you add the
integrator in this manner, it is automatically added to the Dynamics table
on the Compensator Editor page.

Adding an integrator changes the gain margin from infinity to 10.5 dB. Since
the gain and phase margins are now both finite, the Nichols plot shows a
vertical line for the gain margin and a horizontal line for the phase margin.

The linked LTI Viewer automatically updates to show the new response.

4-73



4 Designing Compensators

Step Response for a Compensator Consisting of a Gain and an Integrator

The steady-state value is now 1, which means the steady-state error has been
eliminated, but the overshoot is 34% and the rise time is about 0.7 second.
You must do more work to create a good design.

Adding a Lead Network
Improving the rise time requires that you increase the compensator gain, but
increasing the gain further deteriorates the gain and phase margins while
increasing the overshoot. You need to add a lead network to selectively raise
the gain about the frequency crossover. To add the lead network:

1 Click the Compensator Editor tab to open the Compensator Editor
page.

2 Right-click in the Dynamics table and select Add Pole/Zero > Lead.

This figure shows the process of adding a lead network on the Compensator
Editor page.
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You can also add a lead network in the Graphical Tuning window. To add
a lead network, select Add Pole/Zero > Lead from the right-click menu.
Your cursor turns into a red ‘x’. Left-click along the Nichols curve to add the
lead network. To move the lead network along the curve, left-click the pole
or zero and drag.

You can track the pole’s movement in the status bar at the bottom of the
Graphical Tuning window. The status bar tells you the current location of
the pole.

Using the Compensator Editor page, move the lead network pole to -28
and the zero to -4.3 for this design. The zero should be almost on top of the
right-most pole of the plant (the DC motor model). Adjust the compensator
gain to 84. This gives the final design.
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Final Nichols Plot Design for the DC Motor Compensator

The gain and phase margins are 21.9 dB and 65.7 degrees, respectively.
Inspect the closed-loop step response to see if the rise time and overshoot
requirements are met.
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Closed-Loop Step Response for the Final Compensator Design

As this figure shows, the rise time is 0.448 second, and the overshoot is a little
over 3%. This satisfies the rest of the design requirements.
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Automated Tuning Design
The SISO Design Tool simplifies the task of designing and tuning
compensators. There are five automated tuning methods in the SISO Design
Tool to help you design an initial stabilizing compensator for a SISO loop
on-the-fly or refine existing compensator design so that it satisfies a certain
user-defined design specification.

The available tuning methods are:

• Optimization-based tuning

• PID tuning

• Internal Model Control (IMC) tuning

• LQG synthesis

• Loop shaping

For a detailed discussion of these, see “Automated Tuning” in the Control
System Toolbox User’s Guide.

This section adds a PID controller to a DC Motor example with the following
topics:

• “Loading and Displaying the DC Motor Example for Automated Tuning”
on page 4-78

• “Applying Automated PID Tuning” on page 4-80

Loading and Displaying the DC Motor Example for
Automated Tuning
Follow these steps to load and display the DC Motor example for automated
tuning:

1 If you have not yet built the DC Motor example, type

load ltiexamples

2 To open the SISO Design Tool and import the DC motor, type
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sisotool(sys_dc)

at the MATLAB prompt. This opens both the SISO Design Task node
on the Control and Estimation Tools Manager and the Graphical Tuning
window with sys_dc loaded.

3 Click the Analysis Plots tab to set the analysis plots. Select the plot type
as Step for Plot 1. Then, check the box for plot 1 to the left of Closed-Loop
r to y, as shown in the following figure, to open a linked LTI Viewer with
the closed-loop step response from reference signal r to output signal y.

4 In the LTI Viewer that appears, use the right-click menu to add rise time
and steady state values to your plot.
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Step Response When Compensator = 1

Note that by default, the compensator is 1 and unit negative feedback is used
(see Architecture in the Control System Toolbox User’s Guide). When a unit
step is applied to the setpoint change, the steady state value of the system
output is 0.0361, which is far from the setpoint, and its rise time is 0.589.

Applying Automated PID Tuning

1 Click the Automated Tuning tab.

2 Select PID tuning from the Design method list.

3 Leave C as the default compensator.
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Designing a Proportional-Only Controller

1 For the controller type, click the P option button for proportional-only

control ( C K p= ).

2 Select the Ziegler-Nichols open loop tuning algorithm from the
Tuning algorithm list.

3 Click the Set-Point Tracking option button.

4 Click Update Compensator. The LTI Viewer is updated with the
application of PID automated tuning with P and the compensator value is
now 205.49.
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Note that the rise time is arrived at in just 0.0774 seconds, compared with
0.589 when C=1. However, the steady state value of 0.885 can still be
improved by setting the automated tuning controller type to PI, as described
in “Designing a Proportional-Integral Controller” on page 4-82.

Designing a Proportional-Integral Controller

1 For the controller type, click the PI option button for proportional-integral

control ( C K
K
sp
I= + ).

2 Select the Ziegler-Nichols open loop tuning algorithm from the
Tuning algorithm list.

3 Click the Set-Point Tracking option button.
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4 Click Update Compensator. The LTI Viewer is updated with the
application of PID automated tuning with PI and the compensator value

is now 487 64
1 0 36

.
( . )× + s

s
.

Although the rise time has increased slightly (0.0876), the steady state value
is 1. Applying automated tuning using PID tuning set to PI will guarantee
zero offset.
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Multi-Loop Compensator Design
In many applications, a single-loop design is not feasible. If you have a design
with inner loops, you can use the SISO Design Tool to design a compensator
that meets your specifications.

A typical procedure is to design the innermost loop on its own. You can use the
SISO Design Tool to isolate the design on individual loops. When used this
way, the tool ignores outer loop dynamics. Once the inner loop is designed,
you can move on to the design of the outer loop compensator to achieve the
desired closed-loop behavior. “Example: Position Control of a DC Motor” on
page 4-84 shows an example of this procedure.

Example: Position Control of a DC Motor
Instead of controlling the angular rate of a DC motor, this example develops a
control law for controlling the position (angle) of the motor shaft. The block
diagram of the DC motor, as shown in the following figure, has an integrator
added as an outer loop.

Block Diagram of the Position-Controlled DC Motor

The design goal for this example is the minimize the closed-loop step response
settling time while maintaining an inner loop phase margin of at least 65º
with maximum bandwidth.
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For details on how to derive state-space and transfer function representations
of a DC motor, see “SISO Example: The DC Motor” on page 2-3.

The steps in this process are:

• “Developing a Mathematical Model of the DC Motor” on page 4-85

• “Selecting the Architecture and Importing the Model” on page 4-86

• “Designing the Inner Loop” on page 4-89

• “Tuning the Outer Loop” on page 4-91

• “Validating the Design with the LTI Viewer for SISO Design” on page 4-93

Developing a Mathematical Model of the DC Motor
These are the relevant physical constants:

R=2.0 % Ohms
L = 0.5 % Henrys
Km=0.1; Kb = 0.1 % Torque and back emf constants
Kf= 0.2; % Nms
J = 0.02 % kg.m^2/s^2

First, construct a state-space model of the DC motor with one input, the
applied voltage (Va). The output is the angular rate w.

h1 = tf(Km,[L,R]); % Armature
h2 = tf(1,[J, Kf]) % Equation of motion
dcm = ss(h2) *h1; % w = h2 cascaded with h1
dcm = feedback(dcm, Kb, 1, 1);% Closes back emf loop

Adapting the Model to SISO Tool Architecture

One possible choice for your architecture is this multi-loop configuration.
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Comparing this architecture to the original Block Diagram of the
Position-Controlled DC Motor on page 4-84, it is evident that the two do not
match. Using block diagram algebra, you can manipulate the original figure
into one that fits this architecture.

Position-Controlled DC Motor Rearchitected

To create this representation, add an integrator to get , the angular
displacement, and a pure differentiator in the inner loop’s return path. The
channel from Va to w is dcm(1), making it the appropriate channel for adding
the integrator.

G = dcm*tf(1,[1,0]) % Motor with integrator; output is theta.
C2 = tf('s') % Differentiator

Selecting the Architecture and Importing the Model
Open the SISO Design Tool by typing

sisotool

at the MATLAB prompt. Once the Controls & Estimation Tools Manager
opens, click Control Architecture on the Architecture page. Select the
multi-loop configuration with two compensators, C1 in the forward path and
C2 in the inner feedback loop — located in the lower-right corner.
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Control Architecture Window

Next, import the model parameters by clicking System Data on the
Architecture tab. This opens the System Data dialog box. Set G to G from
the workspace. Assume a perfect sensor and set H to 1. C1 and C2 are the
gains you will use to design a compensator. Set C1 to 1 and C2 to C2 from the
workspace. Your System Data dialog box should look like this.
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Selecting SISO Design Graphical Editor Views
Once you have selected the multi-loop architecture, click the Graphical
Tuning tab. Set the plot types as follows:

1 Open-Loop 1 to "Root-Locus"

2 Open-Loop 2 to "Open-Loop Bode"

Your Graphical Tuning page should look like this.

Graphical Tuning Page Set for DC Motor Multi-Loop Design

Click Show Design Plot to see the SISO Design Graphical editor.
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Designing the Inner Loop
You are now in a position to do the design. Start with the design of the inner
loop. To do this, go to the Architecture page and remove the effects of the
outer loop by following these steps:

1 Click Loop Configuration. This opens the Open-Loop Configuration
dialog box.

2 From the pull-down menu, select Open-Loop Output of C2.

3 Click Highlight feedback loop. This opens a figure of the control
architecture showing the loop configuration.
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Notice how the C1 piece of the compensator and the outer loop are grayed out.
This means that they will have no effect on the inner loop at this time.

Next, turn to the SISO Design Graphical editor. Use the Bode plot for open
loop 2 (the inner loop) and increase the gain to maximize bandwidth subject to
a 65º phase margin. This turns out to be a gain of about 16.1 for C2.
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Setting the Inner Loop Gain

This finishes the design of the inner loop.

Tuning the Outer Loop
The goal in designing the outer loop is to minimize the settling time. Note
that the outer loop can "see" the inner loop, so that the tuning affects the
entire system. Follow these steps:

1 Go to the Analysis Plot tab in the Controls & Estimation Tools Manager.
Select the Closed-Loop r to y check box.

2 Select Step from the Plot 1 pull-down menu. This opens the LTI Viewer
for SISO Design.
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3 Right-click in the step response plot and select Characteristics>Settling
Time. Your LTI Viewer should look like this.

Initial Step Response with Settling Time

The settling time is about 79 s. Return to the SISO Design Graphical editor
and increase the gain of C1 in the root locus plot. At a gain of about 90.2, you
will see the complex pair of poles move toward a slower time constant as
the third pole moves toward a faster one. You can view the trade-off in the
LTI Viewer for SISO Design. As the gain is changed, the closed-loop step
response changes.

The 90.2 gain seems to yield a good compromise between rise and settling
time.
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Final Gain Choice for C1

Validating the Design with the LTI Viewer for SISO Design
Turning back to the LTI Viewer for SISO Design, it is evident that the settling
time is now much lower than the original 78.9 s.

4-93



4 Designing Compensators

With a settling time of about 0.8 s, and a phase margin of 65º in the inner
loop, the design is complete.
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Functions for Compensator Design
The term control system design refers to the process of selecting feedback
gains that meet design specifications in a closed-loop control system. Most
design methods are iterative, combining parameter selection with analysis,
simulation, and insight into the dynamics of the plant. In addition to the
SISO Design Tool, the Control System Toolbox provides a set of commands
that you can use for a broader range of control applications, including

• Classical SISO design

• Modern MIMO design techniques such as pole placement and linear
quadratic Gaussian (LQG) methods

Root Locus Design
The following table summarizes the functions for designing compensators
using root locus design techniques.

Function Description

pzmap Pole-zero map

rlocus Evans root locus plot

sgrid Continuous grid for root locus plots

sisotool Root Locus Design GUI

zgrid Discrete grid for root locus plots

Pole Placement
The closed-loop pole locations have a direct impact on time response
characteristics such as rise time, settling time, and transient oscillations.
Root locus uses compensator gains to move closed-loop poles to achieve design
specifications for SISO systems. You can, however, use state-space techniques
to assign closed-loop poles. This design technique is known as pole placement,
which differs from root locus in the following ways:

• Using pole placement techniques, you can design dynamic compensators.
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• Pole placement techniques are applicable to MIMO systems.

Pole placement requires a state-space model of the system (use ss to convert
other model formats to state space). In continuous time, such models are of
the form

where is the vector of control inputs, is the state vector, and is the vector
of measurements.

State-Feedback Gain Selection
Under state feedback , the closed-loop dynamics are given by

and the closed-loop poles are the eigenvalues of . Using the place
function, you can compute a gain matrix that assigns these poles to any
desired locations in the complex plane (provided that is controllable).

For example, for state matrices A and B, and vector p that contains the desired
locations of the closed loop poles,

K = place(A,B,p);

computes an appropriate gain matrix K.

State Estimator Design
You cannot implement the state-feedback law unless the full state
is measured. However, you can construct a state estimate such that the law

retains similar pole assignment and closed-loop properties. You can
achieve this by designing a state estimator (or observer) of the form

The estimator poles are the eigenvalues of , which can be arbitrarily
assigned by proper selection of the estimator gain matrix , provided that
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(C, A) is observable. Generally, the estimator dynamics should be faster than
the controller dynamics (eigenvalues of ).

Use the place function to calculate the L matrix

L = place(A',C',q)

where A and C are the state and output matrices, and q is the vector containing
the desired closed-loop poles for the observer.

Replacing by its estimate in yields the dynamic output-feedback
compensator

Note that the resulting closed-loop dynamics are

Hence, you actually assign all closed-loop poles by independently placing the
eigenvalues of and .

Example. Given a continuous-time state-space model

sys_pp = ss(A,B,C,D)

with seven outputs and four inputs, suppose you have designed

• A state-feedback controller gain K using inputs 1, 2, and 4 of the plant
as control inputs

• A state estimator with gain L using outputs 4, 7, and 1 of the plant as
sensors

• Input 3 of the plant as an additional known input
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You can then connect the controller and estimator and form the dynamic
compensator using this code:

controls = [1,2,4];
sensors = [4,7,1];
known = [3];
regulator = reg(sys_pp,K,L,sensors,known,controls)

Pole Placement Tools
The Control System Toolbox contains functions to

• Compute gain matrices and that achieve the desired closed-loop pole
locations.

• Form the state estimator and dynamic compensator using these gains.

The following table summarizes the functions for pole placement.

Functions Description

acker SISO pole placement

estim Form state estimator given estimator gain

place MIMO pole placement

reg Form output-feedback compensator given state-feedback
and estimator gains

The function acker is limited to SISO systems and should only be used for
systems with a small number of states. The function place is a more general
and numerically robust alternative to acker.

Caution
Pole placement can be badly conditioned if you choose unrealistic pole
locations. In particular, you should avoid

• Placing multiple poles at the same location.
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• Moving poles that are weakly controllable or observable. This typically
requires high gain, which in turn makes the entire closed-loop
eigenstructure very sensitive to perturbation.

Linear-Quadratic-Gaussian (LQG) Design
Linear-quadratic-Gaussian (LQG) control is a modern state-space technique
for designing optimal dynamic regulators. It lets you trade off regulation
performance and control effort, and to take into account process disturbances
and measurement noise. Like pole placement, LQG design requires a
state-space model of the plant (use ss to convert other model formats to state
space). This section focuses on the continuous-time case (see the reference
pages for dlqr and kalman for details on discrete-time LQG design).

LQG design addresses the following regulation problem.

The goal is to regulate the output around zero. The plant is subject to
disturbances and is driven by controls . The regulator relies on the noisy
measurements to generate these controls. The plant state and
measurement equations are of the form

and both and are modeled as white noise.

The LQG regulator consists of an optimal state-feedback gain and a Kalman
state estimator. You can design these two components independently as
shown next.
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Optimal State-Feedback Gain
In LQG control, the regulation performance is measured by a quadratic
performance criterion of the form

The weighting matrices Q, N, and R are user specified and define the tradeoff
between regulation performance (how fast goes to zero) and control effort.

The first design step seeks a state-feedback law that minimizes the
cost function . The minimizing gain matrix is obtained by solving an
algebraic Riccati equation. This gain is called the LQ-optimal gain.

Syntax. Given the (A,B,C,D) matrices of the system, and the weighting
matrices Q, R, and N, use the lqr function to construct the LQ-optimal gain, K.

K= lqr(A,B,Q,R,N)

If N is omitted, by default its value is 0.

Kalman State Estimator
As in the case of pole placement, the LQ-optimal state feedback is
not implementable without full state measurement. It is possible, however,
to derive a state estimate such that remains optimal for the
output-feedback problem. This state estimate is generated by the Kalman
filter

with inputs (controls) and (measurements). The noise covariance data

determines the Kalman gain through an algebraic Riccati equation.

The Kalman filter is an optimal estimator when dealing with Gaussian white
noise. Specifically, it minimizes the asymptotic covariance
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of the estimation error .

Syntax. Use the kalman function to construct a Kalman filter.

[kest,L,P] = kalman(sys_kf,Qn,Rn,Nn);

returns a state-space model kest of the Kalman estimator given the plant
model sys_kf and the noise covariance data, Qn, Rn, and Nn. The plant model
equations are the following:

where w and v are modeled as white noise. L is the Kalman gain and P the
covariance matrix.

The following figure shows the required dimensions for Qn, Rn, and Nn. If Nn
is 0, you can omit it.

Required Dimensions for Qn, Rn, and Nn

For a complete example of a Kalman filter implementation, see Kalman
Filtering.
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LQG Regulator
To form the LQG regulator, simply connect the Kalman filter and LQ-optimal
gain as shown in the following figure.

This regulator has state-space equations

Syntax. Assuming you have constructed the Kalman filter, kest, and the
compensator, K, use the lqgreg function to create the LQG regulator.

regulator = lqgreg(kest, K);

See LQG Regulation: Rolling Mill Example for a more complete discussion of
construction LQG regulators.

LQG Design Tools
The Control System Toolbox contains functions to perform the LQG design
steps outlined in “LQG Regulator” on page 4-102. These functions cover
both continuous and discrete problems as well as the design of discrete LQG
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regulators for continuous plants. The following table summarizes the LQG
design functions.

Function Description

care Solve continuous-time algebraic Riccati equations

dare Solve discrete-time algebraic Riccati equations

dlqr LQ-optimal gain for discrete systems

kalman Kalman estimator

kalmd Discrete Kalman estimator for continuous plant

lqgreg Form LQG regulator given LQ gain and Kalman filter

lqr LQ-optimal gain for continuous systems

lqrd Discrete LQ gain for continuous plant

lqry LQ-optimal gain with output weighting

Example: LQG Design
As an example of LQG design, consider the following regulation problem.

Simple Regulation Loop

The goal is to regulate the plant output around zero. The input disturbance
is low frequency with power spectral density (PSD) concentrated below
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10 rad/s. For LQG design purposes, it is modeled as white noise driving a
lowpass filter with a cutoff at 10 rad/s, as this figure shows.

This figure shows the Bode magnitude of the shaping filter.

Bode Magnitude of the Lowpass Filter

There is some measurement noise , with noise intensity given by

Use the cost function
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to specify the tradeoff between regulation performance and cost of control.
Note that an open-loop state-space model is

where is a state-space realization of .

The following commands design the optimal LQG regulator for this
problem.

sys = ss(tf(100,[1 1 100])) % State-space plant model

% Design LQ-optimal gain K
K = lqry(sys,10,1) % u = -Kx minimizes J(u)

% Separate control input u and disturbance input d
P = sys(:,[1 1]);
% input [u;d], output y

% Design Kalman state estimator Kest.
Kest = kalman(P,1,0.01)

% Form LQG regulator = LQ gain + Kalman filter.
F = lqgreg(Kest,K)

The last command returns a state-space model F of the LQG regulator .
Note that lqry, kalman, and lqgreg perform discrete-time LQG design when
applied to discrete plants.

To validate the design, close the loop with feedback, create and add the
lowpass filter in series with the closed-loop system, and compare the open-
and closed-loop impulse responses by using the impulse function.

% Close loop
clsys = feedback(sys,F,+1)
% Note positive feedback.

% Create the lowpass filter and add it in series with clsys.
s = tf('s');
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lpf= 10/(s+10) ;
clsys_fin = lpf*clsys;

% Open- vs. closed-loop impulse responses
impulse(sys,'r--',clsys_fin,'b-')This figure compares the open-
and closed-loop impulse responses for this example.

Comparison of Open- and Closed-Loop Impulse Response for the LQG
Example

Example: LQG Design for Set Point Tracking
The standard LQG problem is to regulate the plant output around zero.
“Example: LQG Design” on page 4-103 describes the classical LQG regulation
problem.

You can also apply the LQG design technique to tracking problems, where
the goal is to track a reference input (or set point) to the system. To recast
the regulator as a tracking problem, you must compare the output y to the
reference signal. The goal is then to drive the error between the output and
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the reference to zero. A common practice is to add an integrator to the error
signal, e = y - r, to drive it to zero.

This Simulink block diagram shows a tracking problem in aircraft autopilot
design. To open this diagram, type lqrpilot at the MATLAB prompt.

Tracking Loop

Key features of this diagram to note are the following:

• The Linearized Dynamics block contains the linearized airframe.

• sf_aerodyn is an S-Function block that contains the nonlinear equations
for .

• The error signal between and the is passed through an integrator.
This aids in driving the error to zero.
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State-Space Equations for an Airframe
Beginning with the standard state-space equation

where

The variables u, v, and w are the three velocities with respect to the body
frame, shown as follows.

Body Coordinate Frame for an Aircraft

The variables and are roll and pitch, and p, q, and r are the roll, pitch,
and yaw rates, respectively.

The airframe dynamics are nonlinear. The following equation shows the
nonlinear components added to the state space equation.
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Nonlinear Component of the State-Space Equation

To see the numerical values for A and B, type

load lqrpilot
A, B

at the MATLAB prompt.

Trimming
For LQG design purposes, the nonlinear dynamics are trimmed at
and p, q, r, and set to zero. Since u, v, and w do not enter into the
nonlinear term in the preceding figure, this amounts to linearizing around

with all remaining states set to zero. The resulting state
matrix of the linearized model is called A15.

Problem Definition
The goal to perform a steady coordinated turn, as shown in this figure.
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Aircraft Making a 60° Turn

To achieve this goal, you must design a controller that commands a steady
turn by going through a 60° roll. In addition, assume that , the pitch angle, is
required to stay as close to zero as possible.

Results
To calculate the LQG gain matrix, K, type

lqrdes

at the MATLAB prompt. Then start the lqrpilot model with the nonlinear
model, sf_aerodyn, selected.

This figure shows the response of to the 60° step command.
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Tracking the Roll Step Command

As you can see, the system tracks the commanded 60° roll in about 60 seconds.

Another goal was to keep , the pitch angle, relatively small. This figure
shows how well the LQG controller did.

Minimizing the Displacement in the Pitch Angle, Theta

Finally, this figure shows the control inputs.

4-111



4 Designing Compensators

Control Inputs for the LQG Tracking Problem

Try adjusting the Q and R matrices in lqrdes.m and inspecting the control
inputs and the system states, making sure to rerun lqrdes to update the LQG
gain matrix K. Through trial and error, you may improve the response time of
this design. Also, compare the linear and nonlinear designs to see the effects
of the nonlinearities on the system performance.
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5

Learning More

Locating Demos (p. 5-2) Where to find Control System
Toolbox demos.

Online Help (p. 5-3) How to use the Help Navigator to
access online help.

Setting Plot Preferences and
Properties (p. 5-4)

How to customize plots generated by
the Control System Toolbox.

The MathWorks Online (p. 5-6) Getting the latest information on the
Control System Toolbox.



5 Learning More

Locating Demos
To see more Control System Toolbox examples, type

demo

at the MATLAB prompt. This opens the Demo pane in the Help browser.
Select Control System Toolbox under Toolboxes to list the available
demos.

Alternatively, if you have the Help browser open, you can access the Demo
pane directly and follow the same procedure.
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Online Help

Online Help
For a more detailed explanation of any of the topics covered in this book, see
the documentation listed under Control System Toolbox in the Help Navigator.

The Help Navigator supports string searches. You can specify strings and the
online manuals that you want to search. To begin a search, click the Search
tab. There is also an index available; click the Index tab to view it.
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Setting Plot Preferences and Properties
The Control System Toolbox provides three graphical user interfaces (GUIs)
that give you control over the visualization of time and frequency plots
generated by the toolbox:

• Toolbox Preferences

• Tool Preferences

• Plot Properties

Preferences refer to global options that you can save from session to session
or to any LTI Viewer or SISO Design Tool that you open during a single
session. Properties are options that apply only to the current window. This
section gives an overview of the three GUIs; see the online help system for
complete descriptions.

Although you can set plot properties in any response plot, you can use the
Toolbox Preferences Editor to set properties for any response plot the Control
System Toolbox generates. This figure shows the inheritance hierarchy from
toolbox preference to plot properties.

Preference and Property Inheritance Hierarchy
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Setting Plot Preferences and Properties

You can activate preference and plot editors by doing the following:

• Toolbox preferences — Select Toolbox Preferences under File in either
the LTI Viewer or the SISO Design Tool.

• Tool preferences — Select SISO Tool Preferences under Edit for the
SISO Design Tool and Viewer Preferences under Edit in the LTI Viewer.

• Plot properties — Double-click any response plot created by the Control
System Toolbox or select Properties from the right-click menus.

For a complete discussion of how to use property and preference editors, see
Customization.
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5 Learning More

The MathWorks Online
For the very latest information about the Control System Toolbox and other
MathWorks products, point your Web browser to

www.mathworks.com

and use your Internet news reader to access the newsgroup

comp.soft-sys.matlab

Many books that use MATLAB and the Control System Toolbox to explain
control engineering concepts are available from different publishers. A
booklet titled MATLAB Based Books is available from The MathWorks and an
up-to-date list is available on the Web site.
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